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Actuarial Sciences, Hacettepe University

Assist. Prof. Dr. Başak Bulut Karageyik
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ABSTRACT

A HYBRID APPROACH IN CONSTRUCTING AN INTERNAL SOLVENCY
MODEL

HASGÜL, ETKİN
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. A. Sevtap Selçuk-Kestel

September 2023, 96 pages

This thesis presents a innovative hybrid approach combining Time Series, Artificial
Neural Network (ANN), and Copula models for calculating the Solvency Capital Re-
quirement (SCR) concerning Non-Life Premium Risk across multiple lines of busi-
nesses (LoB). The loss ratio is formulated as Zi = X̂i + Ŷi + εi, where X̂i represents
the Time Series component, and Ŷi denotes the ANN component. Initially, the loss
ratios are subjected to modeling through suitable time series models to capture the
linear component of the model. Subsequently, the appropriate autoregressive neural
network (NNAR) model is applied to the residuals resulting from the time series mod-
eling for each LoB, representing the non-linear component. Lastly, the residuals of
the combined model are modeled using an R-vine structure. By utilizing these mod-
els and the copula structure, simulated loss ratios are generated for the selected LoBs,
enabling the analysis of Non-Life Premium Risk. The comparison with the Standard
SCR model and the proposed model incorporating VaR and TVaR is performed to
assess the efficacy of the proposed approach.

Keywords: SARIMA, ANN, NNAR, COPULA, R-vine, VaR, TVaR, SCR, Premium
Risk
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ÖZ

İÇSEL YETERLİLİK MODELİNİN OLUŞTURULMASINDA HİBRİT BİR
YAKLAŞIM

HASGÜL, ETKİN
Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. A. Sevtap Selçuk-Kestel

Eylül 2023, 96 sayfa

Bu tez, çeşitli hayatdışı sigortalar branşlarında ele alınan Prim Riski için Solvency
Sermaye Gerekliliğini (SCR) hesaplamak için Zaman Serisi, Yapay Sinir Ağı (YSA)
ve Kopula modellerini birleştiren yeni bir hibrit yaklaşım sunmaktadır. Hasar prim
oranı Zi = X̂i + Ŷi + εi formulü ile tanımlanmıştır. Bu formülde X̂i zaman serisi
bileşenini, Ŷi ise YSA bileşenini temsil eder. İlk olarak, hasar prim oranları uygun
zaman serisi modelleri kullanılarak modellenir ve modelin lineer bileşeni oluşturulur.
Sonrasında, uygun otoregresif sinir ağı (NNAR) modeli, her bir branş için uyumlandı-
rılan zaman serisi modellemesinin sonucunda oluşan artıklara uygulanarak, modelin
doğrusal olmayan bileşenini tespit etmek için kullanılır. Son olarak, birleşik modelin
artıkları R-vine yapısı kullanılarak modellenir. Zaman serisi, otoregresif sinir ağı ve
kopula yapısı kullanılarak, seçilen branşlar için hasar prim oranı simülasyonları elde
edilir ve Hayat Dışı Prim Riski analizi yapılabilir. Önerilen yaklaşımın etkinliğini de-
ğerlendirmek için Standart SCR modeli ve önerilen hibrit model sonucunda ortaya
çıkan VaR ve TVaR değerleriyle karşılaştırma yapılır.

Anahtar Kelimeler: SARIMA, YSA, NNAR, COPULA, R-vine, VaR, TVaR, SCR,
Prim Riski
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CHAPTER 1

INTRODUCTION

The concept denoted as solvency pertains to the capacity of an (re)insurance com-

pany to sustain its operations over an extended duration, fulfilling all commitments,

and possessing sufficient equity to ensure the continuation of its activities. Studies

on efficient reserving have been conducted in a regulative basis as well. Although

Solvency I has brought strong bases for a realistic minimum capital requirement de-

termination, there were areas that needed to be improved such as diversification in

accumulation of multiple lines of businesses and valuation methods of assets and li-

abilities. In 2016, Solvency II came into force as a regulatory framework for EU

countries [12]. The Solvency II Directive aims to ensure the enduring financial sol-

vency of (re)insurance company with regards to their capacity to fulfill obligations

towards insured parties. Apart from regulatory and auditing aspects, the Solvency II

framework primarily focuses on managing underwriting, market, credibility, opera-

tional, and liquidity risks.

Assessing the right amount of reserve has always been one of the challenges in

(re)insurance business. Solvency II provides a solid framework for risk accumulation

and a standard formula for capital requirements as a holistic approach. Despite having

accumulated multiple lines of businesses and risks accurately in symmetric distribu-

tions, standard formula for Solvency Capital Requirement (SCR) has shortcomings in

skewed distributions. Known that most of the loss distributions are skewed, develop-

ing internal models is of great importance. Although calibration methodologies are

published by the European Insurance and Occupational Pension Authority (EIOPA),

we believe that employing Copulas, known as link functions between variables, is
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superior to all other methods.

Moreover, although the utilization of copulas effectively explains the dependence

structure within a multivariate scenario, relying solely on copulas for modeling re-

mains insufficient due to the time dimension inherent in the data used. A comprehen-

sive assessment should also be done for both linear and non-linear time components to

mitigate the influence of time-dependent effects on the dependence structure. It pro-

vokes curiosity to assess the feasibility of constructing a model capable of estimating

a capital requirement based on the solvency criteria, wherein due consideration is

given to the historical loss ratios.

Copulas, "bond" or "link" functions are introduced by Sklar in 1959 [33, 34]. Fol-

lowing the publication of the theorem, copulas are used in many areas, such as risk

aggregation in financial studies. In 1998, Wang proposes a set of tools for aggrega-

tion of correlated risks using Monte Carlo Simulations or fast Fourier transform [38].

Frees and Valdez (1998) employ various Copulas to insurance loss data and provide

fitting processes [15]. Having intensified works with Solvency II, Sandström (2007)

set forth a calibration study regarding SCR calculation and shows the effect of non-

calibrated studies on skewed data [29]. In 2011, Savelli and Clemente publish their

work on aggregation of premium risk by using Copulas in hierarchical structures [30].

Nguyen and Molinari (2011) draw the attention to the importance of using Copulas

in SCR calculations as the required amount is decreased [24]. On the other hand,

Haug et al. (2011) focus on testing extreme value copulas and tail copulas on the

extreme losses [16]. Ismail (2018) uses mixture of copulas in aggregation of insur-

ance risks to achieve a better fit so that overestimation or underestimation is avoided

while calculating SCR [20]. In 2019, Pellecchia and Perciaccante propose an alterna-

tive methodology to existing standard formula given in Solvency II Directive, which

is based on employing Copulas in order to avoid underestimation of diversification

effect [27]. Eling and Jung (2020) compare standard models used in Solvency II with

internal models and conclude that standard models results in 50% higher solvency

capital requirement [13].

Taking into account the time-dependency of data, incorporating time parameters in

Copula models becomes a significant requirement in financial modeling. Patton (2001)

2



presents some results on Copula models indicating time-varying conditional expec-

tation [25] and reviews his studies in 2012 [26]. Oleg and Dick (2011) proposed

a Copula-based time series model to forecast time series [35]. Zhao et al. (2021)

publish a Copula-based multivariate time series model [40].

Having calculated premium and reserve risks in SCR, in some of the studies, time-

dependent loss ratios are needed to be engaged to detect volatility. Araichia et al.

(2017) present a General Autoregressive Conditional Sinistrality model, used in re-

serve modeling and risk aggregation, coping with temporal dependence [3].

Several researches in Turkey have been conducted pertaining to Solvency II and Cop-

ula modeling. Höbek (2016) centers on the computation of non-life premium and

reserve risks by employing both the standard formula and the copula based inter-

nal model across three different size insurance companies [17]. The outcome of this

study includes a comparison on SCR. Erdener (2016) proposed a method to estimate

the present value of the mean pure premium per policy through simulations utilizing

the Clayton copula probability distribution function, which simultaneously specifies

the dependence structure [36].

While constructing internal models, it becomes essential to incorporate the company’s

risk attributes encompassing its operational environment, portfolio composition, and

other factors. As a quantitative measure, the loss ratio stands as a prominent represen-

tation of a company’s risk profile, especially for the premium risk. Hence, the central

focus of this thesis is the modeling of the loss ratios. Considered both seasonality

and trend of loss ratios of a specific line of business (LoB), time series models or

parameters help to detect solvency requirements more accurately. Aligned with this

concept, a hybrid internal model is suggested for the purpose of estimating SCR using

historical loss ratios. This process involves employing appropriate models to explain

time components and clarifying the characterization of dependence among LoBs in

a more sophisticated way. Thus, the premium risk of the chosen lines of businesses

are modeled using a hybrid approach incorporating suitable time series models and

autoregressive neural network models. Additionally, R-vine copula structure is used

through the accumulation processes.
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1.1 Organization of the thesis

In Chapter 2, the basic definition of Solvency II and some information regarding

the current perspective of the Turkish Insurance System are given. The calculation

methodology for the standard solvency capital requirement is outlined. In addition,

the current status of the Turkish Insurance industry is provided.

Chapter 3 gives the descriptions of the models and algorithms utilized in the pro-

posed model. Firstly, time series models including regular and seasonal components

are expressed. Secondly, definition of autoregressive neural network model is made.

Next, copula models including R-vine structure is illustrated. Lastly, VaR and TVaR

measurements are defined. Furthermore, the algorithms for the selection criteria of

the models and performance metrics are also covered in this chapter.

In Chapter 4, a comprehensive description of the proposed model is provided. The

internal solvency model regarding premium risk is addressed, and the approach fol-

lowed during the modeling process is explained. The general algorithm of the pro-

posed approach is also given in this chapter.

Chapter 5 covers the implementation part of the thesis. The approach detailed in

Chapter 4 is followed through employing the methods explained in Chapter 3. The

outcomes of the models and the subsequent comparisons are presented within this

chapter, alongside the conducted simulations.
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CHAPTER 2

SOLVENCY II AND TURKISH INSURANCE MARKET

The Solvency II framework encompasses primary considerations involving under-

writing, market, credibility, operational, and liquidity risks, alongside regulatory and

auditing concerns. The Solvency II Directive is structured around three pillars, wherein

all the aforementioned risk evaluations are encompassed within Pillar I. This pillar

involves quantitative assessments, the application of quantitative models, their val-

idation, and the computation of capital requisites, including the Solvency Capital

Requirement (SCR) and Minimum Capital Requirement (MCR). Meanwhile, Pillar

II emphasizes the necessity of a well-structured internal audit, as well as the insurers’

adeptness in proficiently managing their own risks and fostering sound corporate gov-

ernance. Pillar III pertains to the firm’s obligation to furnish information to external

auditors and to ensure transparency for the public.

The Solvency II directive posits that the economic capital, as ascertained through the

SCR, is mandated to maintain a probability of ruin constrained to 0.5%, with the

assessment grounded in the application of volatility metrics such as Value at Risk

(VaR) or Conditional Value at Risk (CVaR) [24]. The calculation of a common SCR

for a composition of various branches involves more than just the aggregation of these

individual branches; it also covers the assessment of potential dependencies. Hence,

it is essential to have an understanding of the dependence structure among risk factors

associated with the respective branches. The expression of the common SCR formula,

functioning as an aggregation formula, is presented in the following equation:

5



SCRcommon =

√∑
i,j

ρi,jSCRiSCRj (2.1)

where SCRi and SCRj are the solvency capital requirements for ith and jth branches

the insurance company operates in and ρi,j expresses the correlation coefficient be-

tween LoBs i and j.

In the scope of this thesis, the non-life premium risk segment is studied. SCRcommon

represents the SCR for aggregate premium risk of all branches. Premium risk is a

form of risk that arises from variations in the timing, frequency, and severity of events

that are insured. It applies to both new insurance policies and unexpired risks on the

existing contracts. A significant aspect of the premium risk is that the provisions al-

located by an insurance company to cater for claims may be inadequate, or require an

increase (QIS5 SCR.9.9. [12]). This occurrence is likely when the insured events turn

out to be more frequent or severe than initially expected. Premium risk encompasses

not only the risk that arises due to variations in the timing, frequency, and severity

but also encompasses the risk arising from the fluctuation of expense disbursements.

This form of risk is particularly material for certain lines of business and must be

accurately represented within the module calculations. Expense risk is considered

to be an implicit component of premium risk (QIS5 SCR.9.10. [12]). On the other

hand, Reserve risk is a type of risk that arises from the variability in the timing and

the magnitude of claim settlements (QIS5 SCR.9.11. [12]).

Standard deviation (σ) and volume (V ) are two main variables taken into account to

be able to calculate the amount for each branch’s capital requirement.

The estimate of net written premium (P t,written
i ) for each LoB i during the for the next

year and the actual net written premium (P t−1,written
i ) of the previous year should be

known. In addition, the estimate of net earned premium (P t,earned
i ) should also be

known for the calculation of premium risk (QIS5 SCR.9.12. [12]).

The capital requirement, NL, for the premium risk is shown by:

NLp = ρ(σ) · V (2.2)
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where V is the volume measure, σ is the combined standard deviation and ρ(.) is a

function which converts σ to a corresponding value to be used for the Value at Risk

(VaR) calculation (QIS5 SCR.9.16. [12]) and shown as:

ρ(σ) =
exp(N0.995 ·

√
(log(σ2 + 1))√

(σ2 + 1)
− 1 (2.3)

whereN0.995 is the 99.5th percentile of the standard normal distribution (QIS5 SCR.9.17.

[12]).

Resulted from the calibration and the lognormal distribution assumption on QIS5

Technical Specifications publication, ρ(σ) converges to 3·σ for VaR99.5 (QIS5 SCR.9.18.

[12]). The proposed simplification is very useful for the calculations.

The function of volume measure for the premium (P) risk for a LoB i is as follows

(QIS5 SCR.8.70. [12]):

V(i,prem) = max((P t,written
i ); (P t−1,written

i ); (P t,earned
i )) (2.4)

On the other hand, the standard deviations for premium risk of LoBs are also listed in

the regulation and given in Table 2.1. It should be noted that Health (Health&Sickness)

and Accident branches are being classified as Non-Life segments in Türkiye. Thus,

those two branches are analyzed as non-life underwriting risks.

LoBs characterized by higher risk exhibit correspondingly elevated standard devia-

tions. The data in Table 2.1 indicates that Miscellaneous branch represents the most

risky LoB, while Health stands out as comparatively less risky within the the studied

sample. These rates contain the historical insights of the European insurance indus-

try, as established by the European Insurance and Occupational Pensions Authority

(EIOPA) through Solvency II regulation.
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Table 2.1: Standard Deviations for Premium Risk (SII)

LoB Standard Deviation
Motor vehicle liability-MTPL 10%
Other motor - Land Vehicle 8%
Fire 8%
Miscellaneous 13%
Accident 4%
Health 4%

While calculating aggregate capital requirements covering multiple LoBs, the consid-

eration of the dependence structure becomes necessary to facilitate diversification. It

is where the correlation matrix is needed to be activated, which assumes significant

role in this process. The correlation values given in Table 2.2 are provided by EIOPA

through Solvency II regulation [12].

Table 2.2: Non-Life Correlation Table

Corr Matrix 1 2 3 4
1: Motor vehicle liability 1 . . .
2: Other motor 0.5 1 . .
3: Fire 0.25 0.25 1 .
4: Miscellaneous 0.5 0.5 0.5 1

A correlation coefficient of 0.5 is attributed to the relationship between the Health

and Accident LoBs, as the Health segment demonstrates a correlation of 0.5 between

Sickness and Accident. Furthermore, in alignment with the directive’s proposition,

the correlation coefficient between the Health segment and the Non-Life is deter-

mined as 0. Under our revised arrangements in relation to utilized LoBs, the modified

correlation table is presented as follows:

Table 2.3: Non-Life Correlation Table (Adjusted)

Corr Matrix 1 2 3 4 5 6
1: Motor vehicle liability 1 . . . . .
2: Other motor 0.5 1 . . . .
3: Fire 0.25 0.25 1 . . .
4: Miscellaneous 0.5 0.5 0.5 1 . .
5: Health 0 0 0 0 1 .
6: Accident 0 0 0 0 0.5 1
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The risk of financial losses associated with unearned premiums arises during the pe-

riod in which the insurer remains accountable for the underwritten risks. Uncertainty

relating to claims, engaging factors such as frequency, severity, and occurrence time,

manifests as premium risk under the context of Solvency. This premium risk incorpo-

rates both the risks underwritten during the period and the unexpired contracts carried

over from the previous period.

Since only premium risk is studied in this thesis, there is an assumption that NLpr

= NLp = NL. Henceforth, our focus is directed towards SCR arising from premium

risk. The formula used to calculate NL is given as follows:

NLcommon =

√∑
i,j

ρi,jNLiNLj (2.5)

where NLi is the capital requirement of premium risk for ith branch the insurance

company operates in and ρi,j represents the correlation coefficient between LoBs i

and j.

2.1 Solvency II requirements in Türkiye

The Turkish insurance industry has a well-established presence, having operated for

many decades. Nevertheless, its magnitude remains relatively modest in relation to

the Turkish Gross Domestic Product (GDP). With the written premiums to GDP ratio

standing at approximately 2%, this value appears small in contrast to European coun-

tries. Consequently, the Turkish insurance sector demonstrates significant potential,

given its current standing.

Figure 2.1 illustrates the gross written premiums spanning from 2015 to 2022. An

inference can be drawn from the data, indicating that the Non-Life sector in Turkey

is significantly larger in size compared to the Life business. It also seems that the

industry has a continuous growth in terms of TRY

Additionally, there appears to be a consistent growth within the industry in terms

of Turkish Lira (TRY). Despite encountering inflation shocks in recent years (2021-
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2022), Turkish insurance industry exhibited a corresponding revenue increase and

manages to maintain its share of the GDP.

Figure 2.1: Gross Written Premiums in Turkish Insurance Industry 2015-2022, BLN
TRY. Premiums are taken from Insurance Association of Turkey, Industry Reports [2]

Concerning Gross Written Premiums in USD, Figure 2.2 displays a relatively consis-

tent flat line pattern, maintaining a range of USD 11.3 to 14.2 billion.

Figure 2.2: Gross Written Premiums in Turkish Insurance Industry 2015-2022, BLN
USD. Premiums are taken from Insurance Association of Turkey, Industry Reports
[2]. Annual Averages of USD/TRY Parity is used for conversion, the rates are re-
trieved from TCMB EVDS [1].

As Türkiye is not a European Union (EU) member, the implementation of Solvency

II is not obligatory for the companies in the country. Nonetheless, in the framework

of the European Union Accession Process and in pursuit of fostering a more secure

environment, the integration of practices compatible with Solvency II appears to be a

pragmatic approach for Turkish regulatory authorities.
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In the study by İbiş and Çoban (2017), the necessary regulatory modifications for

conformity with Solvency II are highlighted. In the context of this thesis, the subse-

quent modifications are examined within the current system to ensure alignment with

Solvency II: describing the risks in details for inclusion in calculations, incorporat-

ing the dependence structure among risks, and accounting for the influence of risk

diversification on calculations, along with granting flexibility to choose between the

standard formula and full/partial internal models [19].
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CHAPTER 3

PRELIMINARIES IN METHODS

The calculations for SCR, arising from premium risk, based on the standard formula

rely on fixed standard deviation values for each LoB and a predetermined correla-

tion matrix that governs the dependencies among LoBs. This method adopts a purely

linear approach to model the interrelationships among LoBs. The determination of

premium risk can be obtained by adopting the methodology proposed in QIS3 (2007),

which involves the use of historical loss ratios [8]. In this approach, the standard de-

viation of historical loss and reserve ratios specific to a given LoB is regarded as the

risk margin, expressed as a percentage of net earned premium. The proposed model

incorporates suitable copula structures and functions to effectively model the rela-

tionships among LoBs, subsequent to the fitting of the optimal time series model for

the linear part and neural network for the non-linear part of loss ratios. In this section,

a detailed explanation of the methodology is provided, outlining the key components

and steps involved.

3.1 Loss Ratio

The loss ratio assumes a pivotal role in actuarial practice, functioning as a funda-

mental metric to evaluate the profitability and underwriting efficiency of insurance

companies. It covers the relationship between incurred losses, denoting the aggregate

claims, and earned premiums over a defined time period. From an academic stand-

point, actuarial professionals precisely analyze the loss ratio to gather the valuable

insights into risk management strategies, pricing methodologies, claims management

practices, and underwriting procedures. Such detailed examination supports the in-
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formed decision-making within the insurance field. In addition to various other di-

mensions, the loss ratio has a critical role within the Solvency II framework, too. It

serves as an indispensable tool for assessing premium and reserve risk. The loss ratio,

expressed as a percentage, is derived through a defined formula as follows:

Zi,t =
Incurred Losses
Earned Premium

=
Lt,incurredi

P t,earned
i

,
(3.1)

where Lt,incurredi refer to the aggregate sum of claim payments disbursed by an in-

surance company for LoB i during a specified time frame, t. Conversely, P t,earned
i

denote the total amount of premiums earned by the insurance company from LoB i

over the same defined time period, t.

In the context of equation 3.1, an associated adjustment is conventionally made to en-

hance the numerator by incorporating the expenses attributable to losses. This modi-

fication of the ratio acknowledges the inclusion of relevant expenditures linked to the

incurred losses, thereby offering a more comprehensive and accurate representation

of the financial impact arising from claims activities. The revised form of equation

3.1 is expressed as follows:

Zi,t =
Incurred Losses + Attributable Expenses

Earned Premium

=
Lt,incurredi + Et,attributable

i

P t,earned
i

,
(3.2)

with the assumption that the expenses attributable to losses for the Turkish market

constitute 70% of the total expenses.

The volatility exhibited by the loss ratio pertaining to a specific line of business pro-

vides significant insights regarding the underwriting risk associated with that partic-

ular segment. Consequently, the utilization of the standard deviation of the loss ratio

assumes remarkable importance as a fundamental parameter. It is asserted that the

standard deviation for each LoB is calculated by
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σ2
i =

T∑
t=1

(Zi,t − Z̄i)2

T − 1
, (3.3)

where Z̄i =
∑T

t=1 Zi,t

T
, t represents the period and T is the total number of periods.

3.2 Time Series Modeling

Given the quarterly nature of loss ratio datasets, we postulate that the genuine re-

lationships among LoBs can be discerned by studying time series components. To

accomplish this, a meticulous time series analysis needs to be conducted, aiming to

mitigate the influence of temporal factors and uncover the underlying dependencies.

By modeling time-related effects, such as trend and seasonality, the analysis facili-

tates a clearer assessment of the true relationships among the LoBs.

Consistent with the aforementioned concept, an examination of Zi,t’s is aimed to be

conducted utilizing suitable time series models. Assume that Xt represents the linear

component of Zi,t in the context of time series model definitions.

Definition 3.2.1. The autoregressive model AR(p) is expressed as

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + · · ·+ φp(xt−p − µ) + ωt, (3.4)

where xt is stationary, and φj has constant values for j = 1, 2, . . . , p, knowing that

φp 6= 0. Here, we assume that noise term, ωt, has a Gaussian distribution with mean

µ and standard deviation σw. In case that µ = 0, ωt turns into a Gaussian white noise

series [32].

AR(p) can also be represented as

xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt, (3.5)

where α = µ(1− φ1 − · · · − φp).

If AR(p) model is represented with autoregressive operator, the representation be-

comes

φ(B)xt = wt (3.6)

15



where

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp (3.7)

and B is the backshift operator which has a form of

Bjxt = xt−j for j = 1, 2, . . . , p. (3.8)

Definition 3.2.2. The moving average model MA(q) is

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q (3.9)

where there are q lags in the mooving average (order q) with parameters θ1, θ2, . . . , θq

knowing that θq 6= 0. It is assumed that wt follows a normal distribution with mean

zero and variance σw.

Equation 3.9 can also be represented by using backshift operator B as

xt = θ(B)wt, (3.10)

where

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q, (3.11)

with the condition that the moving average process maintains stationarity across all

parameter values θj for j = 1, 2, . . . , q.

Definition 3.2.3. The autoregressive moving average model ARMA(p,q) is ex-

pressed as

xt = α+φ1xt−1+φ2xt−2+· · ·+φpxt−p+wt+θ1wt−1+θ2wt−2+· · ·+θqwt−q, (3.12)

where α = µ(1−φ1−· · ·−φp) and φp 6= 0, θq 6= 0 and σ2
w > 0. It is assumed that wt

follows a normal distribution with mean zero and variance σw. If xt has a zero mean,

equation 3.12 turns into

xt = φ1xt−1 +φ2xt−2 + · · ·+φpxt−p+wt+θ1wt−1 +θ2wt−2 + · · ·+θqwt−q, (3.13)

The backshift operator B expression of ARMA(p,q) is

φ(B)xt = θ(B)wt, (3.14)

where

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θqB

q, (3.15)
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Definition 3.2.4. xt process is called as autoregressive integrated moving average

model, ARIMA(p,d,q), if the following is satisfied:

∇dxt = (1−B)dxt (3.16)

which turns into ARMA(p,q) process. In general, the ARIMA can be expressed as

follows:

φ(B)(1−B)dxt = δ + θ(B) (3.17)

knowing that E(∇dxt) = µ and δ = µ(1− φ1 − · · · − φp).

Definition 3.2.5. The multiplicative seasonal autoregressive integrated moving av-

erage model SARIMA(p,d,q)(P,D,Q)[s] model is given by

ΦP (Bs)φ(B)∇D
s ∇dxt = δ + ΘQ(Bs)θ(B)wt (3.18)

where wt is the conventional Gaussian white noise process. Here the orders P and

Q are shown by ΦP (B) and ΘQ(B), respectively. Seasonal difference is shown by

∇D
s = (1−Bs)D.

Seasonality can be defined as multiplicative or additive according to dynamics of the

effect.

3.2.1 Components of Time Series Process

The primary objective of this section is to eliminate the influence of factors such as

trends and seasonality on the loss ratio, which serves as our time series data. By doing

so, we aim to isolate the random component and facilitate the analysis of the solvency

margin derived from the non-life segment through premium risk.

3.2.2 Trend

In order to achieve stationarity in the process, it is necessary to address the presence

of a trend in the series. By detrending the process, an important step is taken towards
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obtaining a random volatility component. Trends observed in time series processes

can be classified into two distinct types: Deterministic trend and stochastic trend.

Deterministic trends are eliminated via model fitting such as linear, logarithmic, ex-

ponential, and etc. On the other hand, stochastic trends are removed via differencing

method which is discussed in the integrated models. Differencing is implemented

in ARIMA and SARIMA models with the specified parameters "d" and "D" (d for

regular trend, D for seasonal trend which will be given in the following subsection).

Trends can be categorized, in another dimension, as global or local. Global trends

exist in whole time while local trends only affects a specific period in timeline of the

process. Hence, it is crucial to examine the nature of the trend in both dimensions. By

incorporating a model to capture the underlying trend in the time series, the process

becomes trend-stationary.

A time series typically consists of a nonstationary trend component along with a

stationary component characterized by a mean of zero. In the context of this model,

we consider the following assumption,

xt = µt + yt (3.19)

where µt = β0+β1twhile yt is the stationary component. In order to induce stationar-

ity in this process, it is necessary to undertake specific transformations by employing

difference function∇. Consequently, a stationary process is obtained such as:

∇xt = xt − xt−1

= β1 + yt − yt−1

= β1 +∇yt.

(3.20)

In the scenario where the nonstationary component is also stochastic in nature, as

indicated by µt = µt−1 + vt knowing that vt is stationary, the difference function

becomes

∇xt = vt +∇yt, (3.21)

which holds stationary condition. In case that µt has a k-th order polynomial form,

∇kyt becomes stationary. Nonetheless, stochastic trend models may need higher or-

der differencing to provide stationarity [32].
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3.2.3 Seasonality

In time series analyses, various periodic patterns may manifest, including annual,

quarterly, monthly, weekly, daily, or intra-daily cycles, among others. Once the pres-

ence of seasonality is detected, it becomes imperative to incorporate appropriate type

of model to ensure accurate estimations and predictions. Parametric methods or dif-

ference method can be both applied for de-seasoning (or season adjustment). By elim-

inating the cyclical patterns inherent in the data, process becomes season-stationary.

3.2.4 Random/Noise Term

Fitted the appropriate model, the series obtained by taking the difference between

the observed values and the fitted values is regarded as the residual or noise term,

representing the random fluctuations in the data. Noise term should be normally

distributed with mean zero and a constant variance for the model to be valid. This

component provides an accurate representation of the underlying volatility of the time

series data, which necessitates modeling through the use of copulas.

3.2.5 Time Series Modeling Algorithm

There are various types of time series models, and the selection of an appropriate

model is pivotal to achieving a desired fit with the data. In the model selection pro-

cess undertaken in this thesis, specific guidelines and tests are employed. Candidate

models are chosen based on insights derived from ACF and PACF plots, in addition

to outcomes from stationary tests, aimed at identifying potential requirements for

regular and seasonal differencing. Furthermore, the "auto.arima" function from the

"forecast" package of R contributes an additional candidate to the list. Subsequent to

modeling, assessments encompass stationarity, serial autocorrelation, constant vari-

ance, and normality assumptions, conducted through corresponding tests. Addition-

ally, AIC and BIC criteria are employed to identify the best-fitted models that fulfill

the requisite assumptions. The algorithm to be utilized for the modeling is delineated

as follows:
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Algorithm 1: Time Series Modeling

1. Visualize the series and conduct an exploratory examination for potential

outliers.

2. If necessary, employ data transformation techniques such as Box-Cox to

stabilize the variance.

3. Examine the stationarity of the transformed series through rigorous analysis.

3.1. Utilize the following tests to determine the stationarity status of the

time series: Augmented Dickey-Fuller (ADF) and

Kwiatkowski-Phillips-Schmidt-Shin (KPSS).

3.2. Utilize Osborn-Chui-Smith-Birchenhall (OCSB) Test to determine

the seasonal unit roots.

3.3. Utilize Breusch-Pagan (BP) test to define heterokedasticity

4. If the series is not stationary, employ the necessary transformations to assure

stationarity

4.1. For non-seasonal time series, apply regular differencing

4.2. For seasonal time series, apply seasonal differencing and if necessary

regular differencing

5. Identify the seasonal model by analyzing the seasonal coefficients of the ACF

and PACF

6. Identify the regular component by exploring the ACF and PACF of the

residuals of seasonal model

7. Evaluate the statistical significance of the coefficients.

8. Residual checks:

8.1. Test for serial correlation (Ljung-Box test)

8.2. Plot the ACF and PACF functions

8.3. Utilize the Shapiro-Wilk normality test as a means of assessing the

adherence of the residuals to the assumption of normality.

9. Perform a comparison among the alternative candidate models using AIC

and/or BIC 20



3.3 Time Series Residuals

Definition 3.3.1. Let X̂i,t be the fitted value for Zi,t by employing the best fitted time

series model. Herewith, the following equation holds for each LoB:

Zi,t = X̂i,t + wi,t, (3.22)

where X̂i,t is estimated by AR, MA, ARMA, ARIMA or SARIMA model and it is

assumed that the residuals of time series model, wi ∼ N(0, σwi
).

3.4 Artificial Neural Network (ANN)

In light of the potential complexity within time series data, which may encapsulate

both linear and nonlinear components, traditional time series models may not fully

capture all the information contained within the data. Consequently, the integration

of an Artificial Neural Network (ANN) subsequent to a time series model could prove

instrumental in acquiring the nonlinear information as well. The hybrid model con-

cept, proposed by Zhang (2003), suggests that such a combined approach would lead

to more robust and stable results compared to exclusive use of single time series mod-

eling techniques [39].

wi,t = Ŷi,t + εi,t, (3.23)

where Ŷi,t represents the fitted values of wi by using ANN model and εi follows a

normal distribution with zero mean.

3.4.1 Neural Network Autoregressive Model (NNAR)

Given that the data structure under consideration is a time series, the utilization of

the Neural Network Autoregressive (NNAR) model is considered suitable. NNAR is

employed in order to model the residuals coming from time series modeling.

Definition 3.4.1. Neural Network Autoregressive Model (NNAR) is a specific type

model of Artifical Neural Networks. NNAR models incorporate neural networks to

model temporal dependencies and grasp the nonlinear information accommodated
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within the time series data. It is a feedforward type of neural network which has

one hidden layer. Multi-step forecasts are generated based on a recursive approach.

Among the several activation functions considered, the Sigmoid (or Logistic) func-

tion emerges as one of the effective choices within the model, and its mathematical

representation is as follows:

g(x) = [1− exp(−x)]−1. (3.24)

The residuals obtained from the time series model is presented as follows:

wt = f(wt−1, wt−2, · · · , wt−p) + εt (3.25)

where f denotes the neural network with the lagged valueswt−k where k = 1, 2, . . . , p

and p is the number of lags. The diagram illustrating ANN model is presented as

follows:

Input Layer
Hidden Layer

(k-nodes)
Output Layer

Figure 3.1: Autoregressive Neural Network

The implementation of NNAR model involves the utilization of the ’nnetar’ function

from the ’forecast’ package in the R programming environment. The function for the

model is represented as NNAR(p, P, k)[m] which encompasses key parameters, where
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’p’ denotes the number of regular lags to be considered, ’P’ signifies the number of

seasonal lags, ’m’ serves as the seasonal frequency parameter, and ’k’ represents the

number of nodes in the hidden layer [18]. During the model selection process, regular

lags, seasonal lags, and seasonal frequency of corresponding time series models are

utilized to account for the parameters ’p,’ ’P,’ and ’m’, respectively. Additionally, the

number of nodes (k) is determined by evaluating the model’s performance by utiliz-

ing appropriate metrics, as well as meeting the normality assumption requirement.

Furthermore, an investigation is conducted by exploring diverse numerical configura-

tions for the number of iteration within neural networks in order to ensure the selected

model exhibits robust stability.

3.5 Performance Metrics

If the residuals of the time series model meet the requisite assumptions, as determined

by the designated criteria, the decision to employ an ANN model to the residuals

of Time Series model is made by performance comparison between time series and

Time Series-ANN model. The performance analysis is conducted using the following

metrics:

Mean Absolute Error (MAE) provides a measure via taking average of the absolute

errors on the forecasts. While this method is straightforward to employ and interpret,

it is important to note that the scale of the metric varies for each dataset. MAE is

described as follows:

MAE =
1

n

n∑
t=1

(100 · |Zt − Ẑt|), (3.26)

where n is the number of observation projected, Zt is the actual value while Ẑt is the

forecast at time t.

Mean Absolute Percentage Error (MAPE) provides a percentage-based measure

via taking average of the relative errors on the forecasts. Thus, this method gives us

the opportunity to make comparisons regardless of the scales. On the other hand, this

method tends to yield unstable results when the actual values approach zero. MAPE
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is expressed as:

MAPE =
1

n

n∑
t=1

(
100 · |Zt − Ẑt|

Zt

)
, (3.27)

where n is the number of observation projected, Zt is the actual value while Ẑt is the

forecast at time t.

Mean Squared Error (MSE) quantifies the average of the squared errors, represent-

ing the average squared difference between the estimated values and the actual ones.

It gives more weight to significant deviations and provides a comprehensive measure

of the overall magnitude of the discrepancies between the estimated and actual values

and it is shown as:

MSE =
1

n

n∑
t=1

(Zt − Ẑt)2. (3.28)

Here, n is the number of observation projected, Zt is the actual value while Ẑt is the

forecast at time t.

Root Mean Squared Error (RMSE) is a performance metric calculated as the square

root of the average of squared errors (MSE). It considers the magnitude of errors by

assigning proportionally larger weights to larger errors. RMSE is sensitive to out-

liers, as their larger squared errors contribute significantly to the overall metric. This

characteristic makes RMSE suitable for assessing the overall accuracy of a forecast

model but sensitive to extreme values in the data and is shown as:

RMSE =

√√√√ 1

n

n∑
t=1

(Zt − Ẑt)2, (3.29)

where n is the number of observation projected, Zt is the actual value while Ẑt is the

forecast at time t.

3.6 Comperative Measures

During the selection of suitable copula models, comparison metrics such as AIC and

BIC are utilized. The copula model with the lowest scores indicates the optimal fit

for the bivariate case, considering the following AIC and BIC calculations.
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AIC := −2
N∑
i=1

ln[c(ui,1, ui,2|θ)] + 2k, (3.30)

BIC := −2
N∑
i=1

ln[c(ui,1, ui,2|θ)] + ln(N)k. (3.31)

It is important to acknowledge that k=1 corresponds to copulas with a single param-

eter, while k=2 pertains to those with two parameters [7].

3.7 Copula Models

Within the realm of statistics and probability theory, copulas serve as multivariate

distribution functions that establish a connection and clarify the joint dependence

structure exhibited by a collection of random variables. Copulas play a fundamental

role in modeling the dependence between variables. Moreover, copulas enable a more

flexible and comprehensive approach to modeling complex dependencies, offering

insights into the joint behavior of random variables.

Theorem 3.7.1. Fundamental Theorem for bivariate Copula: Sklar Theorem Let F

be a two-dimensional distribution function with F1 and F2 margins. Subsequently, a

two-dimensional copula denoted as C exists, satisfying the condition for all x ∈ R̄2,

which is shown as:

F (x1, x2) = C(F1(x1), F2(x2)). (3.32)

Provided that F1 and F2 are continuous distributions then C is unique, alternatively

C is exclusively determined on RanF1xRanF2. Contrarily, if C represents a copula

and F1 and F2 denote distribution functions, then F constitutes a two-dimensional

distribution with F1 and Fn as its marginal components[9].

Definition 3.7.1. Let X and Y denote random variables with joint cumulative distri-

bution:

F (x, y) = P [X ≤ x, Y ≤ y], (3.33)

for all x, y ∈ R with the marginals: F1(x) = P [X ≤ x] and F2(y) = P [Y ≤ y].

The copula of a two-dimensional random vector is a bivariate function that defines its

dependence structure and is unaffected by the marginal distributions.The copula pair
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and the marginal distributions provide an alternative representation for the random

vector, expressed as follows:

F (x, y) = C[F1(x), F2(y)]. (3.34)

Given that F1(x) and F2(y) are continuous then the copula becomes unique and can

be calculated via the distribution function and the following margins [9]:

C[F1(x), F2(y)] = F [F−1
1 (x), F−1

2 (y)]. (3.35)

Copula of x and y is equal to copula of f(x) and g(y) if f and g are two strictly

increasing functions [9].

Theorem 3.7.2. Fundamental Theorem for multivariate Copula: Sklar Theorem

Let F be a d-dimensional distribution function with F1,..., Fd margins. Subsequently,

a d-dimensional copula denoted as C exists, satisfying the condition for all x ∈ R̄d,
which is shown as:

F (x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)). (3.36)

Provided that F1, . . . , Fd are continuous distributions then C is unique, alterna-

tively C is exclusively determined on RanF1x . . . xRanFd. Contrarily, if C repre-

sents a copula and F1, . . . , Fd denote distribution functions, then F constitutes a

d-dimensional distribution with F1, . . . , Fd as its marginal components [9].

3.7.1 Bivariate Copulas

In this thesis, our attention is directed towards two distinct classes of copula families:

Elliptical and Archimedean. Each of these family types possesses its own set of

advantages and limitations. Definitions along with several instances for both families

are illustrated in the following subsections.

3.7.1.1 Elliptical Copulas

The family of elliptical copula offers diverse resources for multivariate contexts, fea-

turing several manageable characteristics of multivariate normal distributions. This
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facilitates feasible modeling for instances involving multivariate extreme cases [14].

Nonetheless, this methodology necessitates the assumption of normality, naturally

symmetry. Additionally, a limitation of elliptical copulas is the absence of a closed-

form representation. Multivariate cases demand needs numerical methodologies for

computation. Given the utilization of bivariate models within the R-vine structure,

the analysis necessitates the incorporation of bivariate copula forms. Gaussian and

t-copulas are the most commonly known elliptical forms.

The bivariate expression of Gaussian copula is given as follows:

C(u, v) = Φρ(Φ
−1(u),Φ−1(v))

=

Φ−1(u)∫
−∞

Φ−1(v)∫
−∞

1

2π
√

1− ρ2
exp
[
− s2 − 2ρst+ t2

2(1− ρ2)

]
dsdt,

(3.37)

where u and v are uniform marginal distributions to be modeled, ρ is the ordinary

linear correlation coefficient and Φ represents The joint distribution function which

corresponds to the bivariate standard normal distribution with a given correlation co-

efficient ρ [14].

The bivariate representation of t-Copula is shown as follows:

C(u, v) = td,ρ(t
−1
d (u), t−1

d (v))

=

t−1
d (u)∫
−∞

t−1
d (v)∫
−∞

1

2π
√

1− ρ2

[
1 +

s2 − 2ρst+ t2

d(1− ρ2)

]− d+2
2

dsdt,
(3.38)

where u and v are uniform marginal distributions to be modeled, ρ is the ordinary

linear correlation coefficient and td represents the t-distribution with d degrees of

freedom [14].

3.7.1.2 Archimedean Copulas

Archimedean copulas offer a wider scope for constructing dependencies, as they do

not require normality or symmetry conditions. Unlike elliptical copulas, archimedean

copulas do not originate from multivariate distribution functions through Sklar’s the-

orem. Thus, multivariate extensions of archimedean copulas have disadvantages such

as suffering from a lack of free parameter choice [14]. The decision on choosing
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which copula type to use in each step of multivariate structure is made via goodness

of fit test (GOF, BIC & AIC). The most appropriate bivariate copula types for each

combining unit are selected in order to produce copulas which belong to a higher

level of current unit in the multivariate structures. Hence, each case study consists of

n different combination of bivariate copulas considering the results of tests in order

to catch best fit while n is the number of combining unit. The general multivariate ex-

pressions for archimedean copulas are derived through an inductive process. All the

multivariate structures provide the same result in terms of general formulas in case

that the same copula family is used for each combination unit.

The general formulas are given for Frank, Clayton, Gumbel and Joe copulas for bi-

variate cases.

One of the most commonly used archimedean copulas is Frank, which has the bi-

variate distribution expressed as follows [14]:

C(u, v) = −1

θ
ln

(
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

)
(3.39)

where u, v ∈ [0, 1] and θ ∈ (−∞,∞) \ 0.

Another common archimedean copula type is Clayton. It is associated with capturing

lower tail dependence in bivariate distributions. Bivariate form is described as [31]:

C(u, v) =
(
max{u−θ + v−θ − 1; 0}

)−1/θ (3.40)

where u, v ∈ [0, 1] and θ ∈ (0,∞).

Gumbel is an upper tail copula with the subsequent bivariate distribution [31].

C(u, v) = exp[−((− lnu)−θ + (− ln v)−θ)1/θ] (3.41)

where u, v ∈ [0, 1] and θ ∈ [1,∞).

The next copula to be described is the Joe copula, which likewise exhibits dependence

in the upper tail. It has a bivariate form illustrated as [21]:

C(u, v) = 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ]1/θ (3.42)

where u, v ∈ [0, 1] and θ ∈ [1,∞).
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3.7.1.3 Non-parametric Copulas

If two random variables are independent of each other, the appropriate copula func-

tion to employ is given as follows [31]:

C(u, v) = u · v, (3.43)

where u, v ∈ [0, 1].

3.7.2 Vine Structure

Despite the existence of numerous bivariate copulas, those with dimensions equal to

or greater than 3 are notably limited in scope. Given that Archimedean copulas serve

as models for multivariate scenarios, it becomes evident that a combination of diverse

copula types is essential to enhance the representation of dependence structures more

effectively. The impetus behind the development of vine copulas was to devise a

methodology for constructing multivariate copulas exclusively employing bivariate

copulas as fundamental building blocks. The conditioning methodology is employed

to facilitate the generation of the required construction [10].

Bedford and Cooke (2001) proposed density decomposition by vine constructions

for conditionally dependent random variables [4]. Within the vine construction, they

defined tree form for the multiple bivariate couple of variables.

Definition 3.7.2. Vine: V constitutes a vine structure on a set of d elements, provided

that the ensuing three criteria are met [5]:

1 V=(T1, . . . , Tj).

2 T1 is a tree consisting of nodes N1={1, . . . , d} and E1, the set of edges.

3 Ti is a tree consisting of nodes Ni ⊂ N1 ∪E1 ∪E2 ∪ · · · ∪Ei−1 and Ei, the set

of edges for i = 2, . . . , j.

Definition 3.7.3. Regular Vine: V is a regular vine on d elements if the following

three conditions are satisfied, additional to the conditions in Definition 3.7.2 [5].
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1 j=d

2 Ni=Ei−1 while Ni=d− (i− 1)

3 Ti is a tree consisting of nodes Ni ⊂ N1 ∪E1 ∪E2 ∪ · · · ∪Ei−1 and Ei, the set

of edges for i = 1, . . . , d.

A regular vine represents a systematic approach for delineating a collection of con-

ditional bivariate constraints. The conditional bivariate constraint corresponding to

each edge is established in the following manner: the set of variables accessible from

a particular edge through the membership relation is termed the constraint set for that

edge. As two edges are connected via an edge from the subsequent tree, the intersec-

tion of their respective constraint sets comprises the conditioning variables, while the

symmetric differences of the constraint sets constitute the conditioned variables. To

elaborate further, the constraint, conditioning, and conditioned sets of an edge can be

rigorously described as follows [23]:

Definition 3.7.4. Conditioned Set

{Ce,r, Ce,s} = {U∗r \De, U
∗
s \De} (3.44)

is a conditioned set with e where, De = U∗r ∩ U∗s is the conditioning set with e, if

e = {r, s} for i = 1, . . . , d − 1 and e ∈ Ei. It is also noted that the constraint set

linked with e is the complete union U∗e of e, thus, the subset of {1, . . . , d} can also be

attainable from e by using the membership relation [23].

Following the establishment of the structure, a triplet of (F ,V ,B) is defined to rep-

resent the R-vine distribution created for an d − dimensional random variables,

X=(X1, . . . , Xd) [10].

Definition 3.7.5. Vine Distribution Triplet: (F ,V ,B) [10]

1 F = (F1, . . . , Fd) is a set of marginal distributions representing the random

variables X1, . . . , Xd.

2 V represents an R-vine tree sequence on d elements.
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3 B = {Ce|e ∈ Ei} for all i = 1, . . . , d − 1, where Ce is a bivariate copula and

Ei is the edge set of Ti in V .

4 Ce is the copula pertaining to the conditional distribution of XCe,r and XCe,s

given XDe for each e ∈ Ei where i = 1, . . . , d− 1 and e = {r, s}.

Theorem 3.7.3. R-vine distribution existence [5, 10]. Should (F ,V ,B) fulfill the

first three properties outlined in Definition 3.7.5, the existence of a d-dimensional F

distribution is assured. The expression for the density of F is as follows:

f1,...,d(x1, . . . , xd) =

(
d∏

h=1

fh(xh)

)

×
d−1∏
k=1

∏
e∈Ei

CCe,r,Ce,s|De

(
FCe,r|De

(
xCe,r |xDe

)
, FCe,s|De

(
xCe,s|xDe

))
(3.45)

For each e ∈ Ei and i = 1, . . . , d − 1 where e = {r, s}, the distribution function

pertaining to XCe,r and XCe,s given XDeis expressed as

FCe,rCe,s,De

(
xCe,r , xCe,s|xDe

)
= Ce

(
FCe,r|De

(
xCe,r |xDe

)
, FCe,s|De

(
xCe,s|xDe

))
(3.46)

Moreover, Fi(xi) where i = 1, . . . , d represents the one-dimensional margins of F .

The resulting distribution becomes an R-vine copula if all margins are standard uni-

form [10].

In order to ascertain the structure and identify the most suitable bivariate copula mod-

els for the edges between nodes, the "rvinecopulalib" package authored by Nagler

and Vatter (2020) is employed [37]. The selection criteria of the best structure rely

on Dissman’s Algorithm. They present a comprehensive selection methodology that

sequentially determines the tree representation and copula type for each copula term

from an extensive range of bivariate copula families, while simultaneously estimat-

ing the associated parameters. This process involves employing any graph-theoretic

algorithm capable of identifying a maximum spanning tree. This approach is used to

choose the tree structure that optimizes the summation of absolute empirical Kendall’s

taus [11].
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Algorithm 2: Sequential method

1. Compute the empirical Kendall’s tau, τ̂r,s, for all possible combination of

variables {r, s}, where 1 ≤ r < s ≤ d.

2. Choose the spanning tree that maximizes the summation of absolute empirical

Kendall’s taus, denoted as

max
∑

e={r,s} in spanning tree

|τ̂r,s| (3.47)

3. Designate an appropriate copula and estimate the associated parameter(s) by

minimizing the AIC for each edge {r, s} within the chosen spanning tree.

4. Apply Independence test for two variables. If two variables demonstrate

independence according to the independence test, the link function employed

is detemined as the independence copula. Otherwise, modify F̂r|s(xjr|xjs) and

F̂s|r(xjs|xjr) for each realization j = 1, . . . , I by utilizing the fitted copula.

5. Apply the items 6-7 for i = 2, ..., d− 1 where d is the number of random

variables.

6. Compute the empirical Kendall’s tau for all conditional variable pairs {r, s|D}
that are eligible to be included in tree Ti.

7. Considering the above mentioned edges, choose the spanning tree maximizing

the summation of absolute empirical Kendall’s taus, described as follows:

max
∑

e={r,s|D} in spanning tree

|τ̂r,s|D|. (3.48)

8. Choose a conditional copula by employing the same approach as described in

Item 3-4 and estimate the associated parameter(s) for each edge {r, s|D}
incorporated within the determined spanning tree. Thereafter modify,

F̂r|s∪D(xjr|xjs, xjD) and F̂s|r∪D(xjs|xjr, xjD) for each realization j = 1, . . . , I

by utilizing the fitted copula.
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3.7.3 Value-at-Risk & Tail Value-at-Risk

As per the Solvency II regulation, the 99.5th percentile holds significant importance

in terms of the safety level, which is attained from the perspective of Value-at-Risk

(VaR). Risk measures constitute a crucial component of risk management across var-

ious fields, particularly within the realm of insurance. Consequently, the assessment

and application of VaR and Tail Value-at-Risk (TVaR) measures are conducted on the

summation of exceeding values for {t+ 1}th period, S{total,t+1}

Definition 3.7.6. VaR formula is defined as follows:

VaR[S; q] = F−1(S) = inf{s : FS(s) ≥ q} (3.49)

where S is the underlying variable for the risk and q is the level of confidence [22].

A risk measure is categorized as coherent if it fulfills the following axioms: Subaddi-

tivity, Monotonicity, Translation Invariance and Positive Homogeneity. VaR is not a

coherent risk measure since it does not satisfy Subadditivity axiom. However, given

that the standard approach in Solvency II is aligned with the VaR, it is, therefore, also

analyzed in this study for the purpose of comparison.

Definition 3.7.7. Tail Value-at-Risk (TVaR) formula is defined as follows:

TVaR[S; q] =
1

1− q

∫ 1

q

VaR[S;h]dh (3.50)

=
1

n

n∑
j=1

inf{Sj ≥ VaR[S; q]} (3.51)

where n is the number of observations [22].
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CHAPTER 4

INTERNAL SOLVENCY MODEL

Let Zt denote the loss ratio defined in Equation 3.2. In this thesis, we propose a com-

position of methods which captures both the time impact and dependence structure of

LoB in Solvency II framework. To do so, we implement the proposed methodology

on Turkish Insurance dataset to illustrate the development of capturing the contribut-

ing variables.

Subsequently in the thesis, the type of LoB is denoted by the variable i, where i takes

values from 1 to d, and the time period is represented by the variable t, ranging from

1 to T.

Proposition 4.0.1. The correlation coefficients calculated using Loss Ratios includes

trend and seasonality effects, too. In order to remove these effects and determine

dependence, we work with residuals after time series and ANN fitting, εi,t for i =

1, 2, ..., d.

Herewith, the Loss Ratio equation is defined as:

Zi,t = X̂i,t + Ŷi,t + εi,t, (4.1)

where X̂i,t component represents the fitted values of time series model and Ŷi,t is the

estimation of applied ANN model to the residuals of employed time series model,

denoting the nonlinear time component. Thus, the remaining noise part, the residual

of hybrid Time series-ANN model (εi,t) is expected to be distributed normally with a

mean zero.

35



4.1 Copula Modeling Algorithm

The following algorithm is utilized to fit copula models to the residuals of Hybrid

Time series-ANN Model. Algorithm 3 involves a series of procedures consisting of

the transformation of initial variables, determination of trees, and selection of copulas,

as detailed in the subsequent algorithm.

Algorithm 3: Copula Modeling
Let εi,t be the residuals of hybrid model for LoBs for i = 1, 2, . . . , d and

t = 1, 2, . . . , T .

for i← 1 to d by 1 do
Transform εi,t to ui,t from [-∞,+∞] to [0,1] via using corresponding

quantiles where t = 1, 2, . . . , T ;

end

Save the ui,t for i = 1, 2, . . . , d and t = 1, 2, . . . , T .

Utilize the Algorithm 2 on ui,t: Sequential Estimation Approach to select the

suitable tree structure and copula functions for the edges connecting nodes

across all LoBs.

It is noteworthy that the "pobs" function within the R:VineCop package can serve

for transformation purposes, while the "vinecop" function in the R:rvinecopulalib

package is employed to establish tree structures and copula functions [37].

4.2 Simulation

Upon completion of copula modeling, we proceed to perform simulations under the

determined copula structure. This simulation process can be achieved through several

methods, including the Inverse Rosenblatt Transform (1952) [28] or Recursion over

conditional distributions, as proposed by Czado (2022) [10] by referencing Joe (1996)

[21].

The Inverse Rosenblatt Transform method involves taking random uniform marginal

sets and converting them into dependent variables through the use of a predetermined

copula. The following definition for Inverse Rosenblatt Transform was provided in
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Czado’s paper in 2022 [10].

Definition 4.2.1. Inverse Rosenblatt Transform: Let L(U) = (K1, . . . , Kd) = K be a

random vector consisting of independent uniform variables. The following inversion

U = L−1(K) transform the independent variables K into a set of U characterized by

a copula C. The conditional function for U is described as follows:

Ui = C−1
i|i−1,...,1(Ki|Ki−1, . . . , K1), (4.2)

where i = 1, . . . , d. The recursion formula defined by Czado and Nagler (2022) is

given as follows[10]:

FA|B(.|b) =
∂CA,Bi;B−i

(FA|Bi
(a|b−i), FBi|Bi

(b|b−i))
∂FBi|B−i

(bi|b−i)
(4.3)

where CA,Bi|;B−i
(., .) is the copula associated to (A,Bi) given B−i.

Ultimately, one of the proposed approaches is utilized to simulate a uniform distribu-

tion set that represents the quantiles for the residuals of the SARIMA-ANN model.

Proposition 4.2.1. The derived quantiles are transformed into normally distributed

residuals, characterized by a mean of zero and a standard deviation computed from

the original residuals. Furthermore, Inverse Transform Method is employed for the

transformation process.

Subsequently, let εi,T+1 be the representative of residual of LoBi for the next time

period where T is the last period analyzed. The expression of the loss ratio of LoBi

for the same time period is defined as follows:

Zi,T+1 = X̂i,T+1 + Ŷi,T+1 + εi,T+1, (4.4)

where X̂i,T+1 is the Time Series component and Ŷi,T+1 is the ANN component.

Upon simulating Zi,T+1 for n iterations, a collection of n loss ratios is obtained for

each LoB. Considering the volumes of LoBs, the required reserve amount to cover

the losses in the upcoming time slot is expressed as follows:

Ri,T+1 = Zi,T+1 · V̂i,T+1

= (X̂i,T+1 + Ŷi,T+1 + εi,T+1) · V̂i,T+1

(4.5)
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Since V̂i,T+1, X̂i,T+1 and Ŷi,T+1 are constant estimates, εi,T+1 is the only source for

volatility of Ri,T+1. Consequently, there exist n distinct simulations for each LoB

concerning the required reserve amount, where n is the number of simulation.

Proposition 4.2.2. Given that Zi,T+1 encompasses expenses, max(Zi,T+1−1, 0) con-

stitutes the ratios of the excess values that must be covered by the SCR margin. This

provides insight into the required provision of SCR Non-Life capital [17].

Proposition 4.2.3. Considering the excess values as per Proposition 4.2.2, the amount

requiring coverage by the Non-Life Premium Solvency Capital Requirement (SCR

NL) is expressed as follows:

Si,T+1 = max(Zi,T+1 − 1; 0) · V̂i,T+1

= (X̂i,T+1 + Ŷi,T+1 + εi,T+1 − 1; 0) · V̂i,T+1.
(4.6)

Excess values are computed by deducting "1", which corresponds to 100%, from the

loss ratios, and negative values are substituted with "0" to mitigate any unnecessary

diversification tendencies among the LoBs. Following summation holds for n simu-

lation of Si,T+1:

Stotal,T+1 =
d∑
i=1

Si,T+1. (4.7)

4.2.1 SCR: Non-Life Premium Risk

Ultimately, VaR99.5[Stotal,T+1] attained from n simulations serves as a representative

of the SCR attributable to Non-Life Premium risk. Furthermore, the calculation of

TVaR99.5[Stotal,T+1] is also conducted as a coherent risk measure.

4.2.2 Proposed Model Algorithm

The hybrid model algorithm is constructed by incorporating the previously discussed

methodologies. The suggested framework accepts Loss Ratios and Volume measures

as inputs and generates simulated capital requirement outcomes for numerous sce-

narios, covering a specified set of LoBs and alternative SCR values relating to the

Non-Life premium risk. Algorithm 4, constructed for the proposed model is given as

follows.
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Algorithm 4: Proposed Model Algorithm
Let Zi,t be the Loss Ratio Matrix where i is LoB and t is time.

for i← 1 to d by 1 do
Apply Algorithm 1 to Zi,t where t = 1, 2, . . . , T to assign the appropriate

time series model for each LoB;
end

Let X̂i,t be the fitted value for Zi,t and wi,t be the residuals such that

wi,t=Zi,t-X̂i,t.

Save wi,t’s for i = 1, 2, . . . , d and t = 1, 2, . . . , T .

for i← 1 to d by 1 do
Apply Autoregressive Neural Network (NNAR) model to the wi,t’s where

t = 1, 2, . . . , T ;

if wi,t ∼ N(0,σwi
) then

if Time series-ANN model performs better than Time series model

then
Save the εi,t where t = 1, 2, . . . , T

end

end

else if wi,t � N(0,σwi
) then

Save the εi,t where t = 1, 2, . . . , T

end

end

Let Ŷi,t be the fitted value for wi,t and εi,t be the residuals with the

assumption that εi,t follows a Normal distribution.

for i← 1 to d by 1 do
Fit Normal distribution with zero mean to each εi,t where t = 1, 2, . . . , T ;

end

Apply Algorithm 3 to εi,t matrix where i is LoB and t is time.

Save the tree structure and bivariate copula distributions assigned to the

nodes.
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Algorithm 5: Proposed Model Algorithm, continued

for s← 1 to n by 1 do
Apply Inverse Rosenblatt Transform 4.2.1 or Recursion formula 4.3 to

create n simulations of ui,s’s where i = 1, 2, . . . , d under the chosen

copula structure.
end

Save n simulated uniform margins ui,s where i = 1, 2, . . . , d and

s = 1, 2, . . . , n .

for i← 1 to d by 1 do
Perform n simulations for the residuals εi,s where s = 1, 2, . . . , n by

using Inverse Transfer Method on the fitted distribution.
end

Save n simulated residuals εi,s where i = 1, 2, . . . , d and s = 1, 2, . . . , n .

for i← 1 to d by 1 do

for l← T + 1 to T + 4 by 1 do
Calculate the n simulations of Zi,l by X̂i,l + Ŷi,l + εi,s where

s = 1, 2, . . . , n;

Calculate the n simulations of Si,l by max(Zi,l − 1; 0) · V̂i,l;
end

end

Save the n · d simulations for l = T + 1, T + 2, . . . , T + 4

for l← T + 1 to T + 4 by 1 do

for s← 1 to n by 1 do
Calculate the aggregate SCR, Stotal,l by

∑d
i=1 Si,l

end

end

Save the 4 · n simulated Stotal,l results.

Calculate the VaR99.5 and TVaR99.5 of aggregate values, Stotal,l.

Moreover, a schematic diagram is presented to clarify the outlined model’s algorithm,

offering readers an enhanced visual comprehension of the proposed methodology.
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Figure 4.1: Internal Model Diagram
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4.3 Limitations

A significant limitation of this study lies in the availability of the data. Given the

absence of public quarterly data pertaining to a company or other countries, the scope

of this case study is limited to data pertaining to the Turkish industry, which was

obtained from the periodical reports published by the Insurance Association of Turkey

[2].

Another limitation concerning the datasets pertains to recent significant occurrences,

including the Covid-19 pandemic and the subsequent financial outcomes of the mon-

etary measures taken during the pandemic. The initial impact of the pandemic mani-

fests in the loss frequencies, which experience a significant reduction across various

branches, consequently causing volatility in the rates. Subsequently, inflation due

to the pandemic influences the severities. Thus, the time span of 2009 to 2019 (44

quarters) is employed for the loss ratios in order to mitigate the potential of abnormal

volatility caused by the pandemic.

Furthermore, numerous methodological approaches can be hybridized, such as the

utilization of Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNNs),

Gated Recurrent Unit (GRU), or various other machine learning algorithms as Sup-

port Vector Machine (SVM) integrated into time series modeling. Nevertheless, it is

essential to acknowledge that each of these methods comes with its distinct set of ad-

vantages and drawbacks. In this thesis, our choice is to leverage time series analysis

in conjunction with the autoregressive neural network (NNAR) approach to make a

novel contribution to the academic literature.
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CHAPTER 5

CASE STUDY: NON-LIFE PREMIUM RISK

This chapter covers the practical implementation part of the thesis. As a general pro-

cedure, the application of the internal model to the chosen LoBs is done by using

Algorithm 4. The procedure involving loss ratio calculations, the selection of ap-

propriate time series models for individual LoBs, the application of ANNs to time

series residuals, and the establishment of a suitable R-vine structure based on hybrid

Time Series-ANN model residuals is presented. Conclusively, a comparison between

the standard SCR model, the standard SCR model incorporating calculated standard

deviations, and the outcomes of the proposed model is provided through tables and

figures.

5.1 Data

Solvency II is a mandatory regulation for the (re)insurance companies operating in

the European Union. However, this thesis centers its attention on the Turkish mar-

ket. Although the obligatory implementation of Solvency II is absent in Türkiye, it

remains imperative to exhibit the industry’s performance with regard to premium risk

to practitioners. Among many branches available in in the Turkish Market, Acci-

dent, Fire, Health, Motor Third Party Liability (Traffic), Land Vehicle (Casco) and

Miscellaneous have been chosen to be used in case study. These LoBs represent

roughly 90% of the whole Turkish Non-Life market. Data for the study lies between

2009-2019, 44 quarters in total. Incurred Losses, Earned Premiums, Expenses and

Written Premiums for the mentioned LoBs are retrieved from Insurance Association

of Turkey’s (TSB) public database [2]. The quarterly loss ratios for these branches
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are calculated using Equation 3.2.

Let Zi,t represents the loss ratio for LoB i and for quarter t assuming that i = 1, ..., 6

for Accident (Acc), Fire (Fir), Health (Hea), MTPL (Mtp), Land Vehicle (Lan) and

Miscellaneous (Mis), respectively and t = 1, ..., 44 starting from the first quarter of

2009 to the last quarter of 2019. Furthermore, 10% of the data is reserved as test set

while remaining 90% is used as training set. The descriptive statistics of loss ratios

for the chosen six LoBs is given in Table 5.1 and they are plotted in Figure 5.1. It is

important to acknowledge that the provided descriptive statistics involves the entire

dataset spanning from 2009 to 2019, while the modeling process is conducted using

the training set.

Table 5.1: Descriptive Statistics: Loss Ratios

Stat/LoB Acc Fir Hea Mtp Lan Mis
Min 39% 56% 78% 91% 74% 56%
Median 54% 79% 95% 113% 91% 79%
Mean 53% 80% 95% 117% 93% 78%
Max 68% 131% 119% 190% 121% 109%
Std. Dev. 8% 13% 10% 18% 12% 12%
Skewness 0.06 1.22 0.17 1.77 0.54 0.31
Kurtosis -0.85 3.11 -0.27 4.5 -0.39 -0.35

Drawing inference from Table 5.1, it is evident that MTPL exhibits the broadest range

and highest standard deviation, thus positioning it as the branch with the highest pre-

mium risk. In contrast, Accident appears as the least risky one. Surpassing the thresh-

old of 100% can be justified as an indication of requirement of an additional funding

on the top of the regular reserves. It is essential to emphasize that, with the excep-

tion of "Accident", all listed LoBs experience instances where their loss ratios exceed

100% necessitate extra funding to ensure solvency within the context of these specific

branches.
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Figure 5.1: Loss Ratios of the chosen LoBs

MTPL branch displays a high sensitivity to inflation in spare part prices. Currency

shocks make an immediate impact on spare part costs, subsequently leading to an

elevation in MTPL loss ratios. Furthermore, substantial increases in minimum wage

rates have a significant effect on the MTPL segment, as they directly impact bodily in-

jury claims calculations in MTPL. Additionally, regulatory modifications such as the

allocation of specific amounts to government entities result in temporary increases.

The implementation of the new price cap system in 2017 led to a rise in MTPL loss

ratios, too.

Similarly to MTPL, the augmentation in spare part costs initiates a rise in the loss

ratio of Land Vehicles, especially when subjected to substantial currency fluctuations.

Nonetheless, this impact is comparatively less noticeable than that observed in MTPL,

primarily due to the absence of a price ceiling on Land Vehicles, a distinction from

the MTPL framework.

The escalation of outstanding claims provisions within the Fire branch during the

year 2016 can be attributed to the occurrence of terrorist incidents. This subsequently

gives rise to a corresponding elevation in the loss ratio [2].
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5.2 Time Series Modeling

Following the computation of loss ratios, the time series modeling (Algorithm 1) is

employed individually for each LoB. As an illustration, the health branch is presented

as a whole analysis in this section to elucidate the procedural steps for the reader.

However, all the results concerning the other LoBs are also presented in Appendix A.

The time series data, along with the Autocorrelation Function (ACF) and Partial Auto-

correlation Function (PACF) are depicted in the subsequent Figure 5.2. ACF function

seems to decay to insignificant values as lags increase and there seems two spikes in

PACF function. Taking into account the seasonal aspect as well, it is proposed that

the first candidate model for analyzing the Health data is SARIMA(2,0,0)(1,1,0)[4].

Three distinct types of tests were employed to assess the stationarity of the time series.

Augmented Dickey-Fuller (ADF) and Kwiatkowski-Philips-Schmidt-Shin (KPSS) tests

are utilized to detect regular stationary while Osborn-Chui-Smith-Birchenhall (OCSB)

test is applied in order to detect seasonal stationarity.

The stationarity tests were conducted on the Health data, and the results (Table 5.3)

indicate that for achieving stationarity, both regular and seasonal differences should

be applied. Subsequent to applying both regular and seasonal differencing, the time

series becomes stationary.

As observed, the PACF exhibits significant spikes while the ACF of Health loss ratio

shows a decaying pattern. This observation leads us to consider an AR Model. How-

ever, given the outcomes of the regular and seasonal stationarity tests, it is logical to

examine the ACF and PACF of the regular and seasonal lagged data.
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(a) Original

(b) Regular Difference

(c) Seasonal Difference

Figure 5.2: Health Insurance loss ratios and its components, 2009-2018
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Drawing inference from the ACF and PACF graphs of the regular lagged data, it

can be observed that there are two significant spikes in the PACF while the ACF

demonstrates a decaying pattern. On the other hand, concerning the seasonally lagged

data, there is a single significant spike observed on the PACF while the ACF exhibits

a tailing off pattern. Thus, the second candidate model according to the lagged graphs

is: SARIMA(2,1,0)(1,1,0)[4].

Furthermore, "auto.arima" function in "forecast" package of R indicates a third can-

didate, which is: SARIMA(1,1,0)(0,1,1)[4]. A comparison is conducted among three

candidate models to determine the most suitable model for the analysis as following.

Table 5.2: Comparison of Time Series Models: Health

Fitted Models ADF KPSS OCSB SW BP LB AIC BIC
(2,0,0)(1,1,0)[4] 0.070 0.043 -5.25 0.500 0.74 0.230 -129.6 -123.2
(2,1,0)(1,1,0)[4] 0.031 0.100 -3.49 0.310 0.70 0.071 -124.7 -118.4
(1,1,0)(0,1,1)[4] 0.031 0.100 -3.49 0.130 0.70 0.420 -131.4 -126.8
Criteria <0.05 >0.05 <- 1.89 >0.05 >0.05 >0.05 Smallest Smallest

It should be noted that criteria for ADF, KPSS, SW and LB tests represents p-values

while decision on OCSB is made according to test statistics. The model selection

based on AIC and BIC involves choosing the model with the smallest AIC or BIC

value. Based on the comparison values on Table 5.2, the best-fitted model is identified

as SARIMA(1,1,0)(0,1,1)[4].

The coefficient test results (in Figure 5.3) reveal that both the Autoregressive (AR)

and Seasonal Moving Average (SMA) parameters in SARIMA(1,1,0)(0,1,1)[4] model

are statistically significant.

Figure 5.3: Coefficient Test for Health Time Series Model
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After completing the modeling phase, ACF and PACF functions of the model residu-

als are plotted, as illustrated in Figure 5.4.

Figure 5.4: Health Residuals

It appears that there is no significant auto correlation or partial auto correlation ob-

served between the lags of the model residuals.

The results of the stationary tests in Table 5.3 include original loss ratios, regularly

differenced, seasonally differenced, and both regularly and seasonally differenced

data sets across six LoBs. These results are presented only for the purpose of inferring

trend detection.

Drawing inferences from Table 5.3, it can be concluded that Health exhibits non-

stationarity with respect to seasonality since prior to the application of seasonal dif-

ferencing, the test statistic is greater than the critical value. However, following the

implementation of seasonal differencing, the time series becomes seasonally station-

ary.

The outcomes of the ADF tests indicates the presence of unit roots in all LoBs, ne-

cessitating transformations before modeling. In contrast, the results of the KPSS tests

suggest non-stationarity for Accident and Health LoBs, while the remaining LoBs

exhibit stationarity. Notably, there exist contradictions between the ADF and KPSS

test results. However, the modeling results presented in Table 5.4 support the relia-

bility of the KPSS test results within our datasets. This is substantiated by the fact

that differences are not taken in Fire, MTPL and Miscellaneous, yet all assumptions
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remain satisfied after modeling.

Table 5.3: Stationary Tests for LoBs’ original loss ratios and differences

LoB/Tests ADF KPSS OCSB
Acc 0.618 0.013 -3.948
Acc diff 0.022 0.100 -5.533
Acc r-s diff 0.020 0.100 -4.589
Fir 0.176 0.100 -4.048
Fir diff 0.014 0.100 -7.767
Fir r-s diff 0.016 0.100 -5.515
Hea 0.190 0.024 -1.040
Hea diff 0.077 0.025 -5.258
Hea r-s diff 0.031 0.100 -3.489
Mtp 0.086 0.100 -5.073
Mtp diff 0.069 0.100 -8.357
Mtp r-s diff 0.030 0.100 -5.331
Lan 0.946 0.064 -3.186
Lan diff 0.022 0.100 -11.559
Lan r-s diff 0.020 0.100 -7.949
Mis 0.273 0.100 -4.667
Mis diff 0.010 0.100 -7.215
Mis r-s diff 0.014 0.100 -4.731
Criteria <0.05 >0.05 <1.8927

On the rows labeled with "diff" quote, regular differencing is applied to the LoBs
before ADF and KPSS tests, while seasonal differencing is utilized before OCSB
test. The criteria employed for ADF and KPSS tests involve the p-value, whereas this
criteria is the test statistic for OCSB test.

The same process given in Algorithm 1 is followed to determine the most appropriate

time series model for the other LoBs as well. Analyses concerning the remaining

LoBs are available within the Appendix A. The best fitted time series models are

given in the following Table 5.4.
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Table 5.4: Best Fitted Time Series Models of LoBs

LoB Best Fitted Model Constant Description
Accident (1,1,1)(0,0,0)[4] NO ARIMA
Fire (0,0,0)(0,0,0)[4] YES Random Walk With Drift
Health (1,1,0)(0,1,1)[4] NO SARIMA
MTPL (1,0,0)(0,0,0)[4] YES AR
Land Vehicle (0,1,1)(0,0,0)[4] NO ARIMA
Miscellaneous (0,0,0)(0,0,0)[4] YES Random Walk With Drift

The inclusion status of the constant term is also provided in Table 5.4. If a constant

term is required in the model, it is denoted as "YES".

After completing the modeling phase for all LoBs, Breusch Pagan (BP) test is applied

to the residuals to test if heteroskedasticity is present, Ljung-Box (LB) is applied to

see if there is a serial autocorrelation and Shapiro-Wilk (SW) test is employed to

check if normality assumption is satisfied. The results of these tests are given, as

expressed in Table 5.5:

Table 5.5: Diagnostic Tests Results: P-values

Diagnostics Tests / LoB Acc Fir Hea Mtp Lan Mis
BP 0.94 0.31 0.69 0.15 0.71 0.07
LB 0.75 0.86 0.42 0.62 0.38 0.86
SW 0.63 0.01 0.13 0.01 0.02 0.37

It is important to observe that if the p-value in Table 5.5 exceeds 0.05, this implies

the absence of heteroskedasticity according to the BP test, absence of serial autocor-

relation based on LB test, and fulfillment of the normality assumption in relation to

the SW test. Based on the BP tests results, it can be concluded that the variance in

the data sets remains constant, which implies that there is no requirement for ARCH-

GARCH modeling. According to the results of the Ljung-Box (LB) tests, it can be

inferred that there are no significant serial autocorrelations present in the residuals

obtained from the models. SW test results indicates that the residuals of Fire, MTPL

and Land Vehicle LoBs do not satisfy the normality assumption. In such instances,

it is customary to consider the possibility of non-linear patterns within the time se-

ries data. As a result, an Artificial Neural Network (ANN) namely, Autoregressive

Neural Network (NNAR) is utilized to model the non-linear components in the time
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series data. Despite the fulfillment of the normality assumption for certain residual

sets from time series models, ANN models are still employed. The time series and

Time series-ANN models are compared using several performance criteria, and the

models that meet both the normality assumption and exhibit the best performance are

chosen as the final models.

5.3 Artificial Neural Network - NNAR

NNAR models are chosen based on performance criteria, and the best-fitted models

among them are selected as ANN models. Subsequently, a comparison is conducted

between the Time Series (TS) models and the Time Series combined with Artificial

Neural Network (TS+ANN) hybrid models.

The performance results regarding six LoBs are given in Table 5.6. Change col-

umn represents the performance improvement on each LoB. The "Change" column

indicates the improvement in performance for each LoB. In cases where the value

is negative, it signifies an improvement in performance compared to the TS model.

Should enhancements be observed across all evaluation criteria, while simultaneously

fulfilling the normality assumption, the hybrid model is selected for implementation.

According to the performance results, there are no improvements observed in two

cases: Health and MTPL. However, for the remaining cases, the hybrid model demon-

strated superior performance: Accident, Fire, Land Vehicle and Miscellaneous. De-

spite the fact that the performance of the Time Series model alone is better, the hybrid

model is employed for the MTPL dataset due to the observed improvement in meet-

ing the normality assumption. For the Health dataset, no improvement is observed in

any perspective; therefore, the time series model is utilized for this case.
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Table 5.6: Comparison of Time Series and TS+ANN Models

LoB Criteria TS TS + ANN Change (%) Final Model

Accident

MAE 0.03342 0.02878 -14% TS + ANN
MAPE 0.07987 0.06791 -15% TS + ANN
MSE 0.00152 0.00092 -39% TS + ANN
RMSE 0.03893 0.03031 -22% TS + ANN

Fire

MAE 0.06636 0.02735 -59% TS+ ANN
MAPE 0.08145 0.03424 -58% TS + ANN
MSE 0.00590 0.00082 -86% TS + ANN
RMSE 0.07681 0.02866 -63% TS + ANN

Health

MAE 0.02202 0.03313 50% TS
MAPE 0.02384 0.03548 49% TS
MSE 0.00050 0.00180 260% TS
RMSE 0.02246 0.04245 89% TS

MTPL

MAE 0.06511 0.06830 5% TS
MAPE 0.05693 0.05937 4% TS
MSE 0.00539 0.00564 5% TS
RMSE 0.07339 0.07513 2% TS

Land Vehicle

MAE 0.15516 0.15391 -1% TS + ANN
MAPE 0.18492 0.18342 -1% TS+ ANN
MSE 0.02518 0.02477 -2% TS + ANN
RMSE 0.15869 0.15738 -1% TS + ANN

Miscellaneous

MAE 0.06905 0.05955 -14% TS + ANN
MAPE 0.08599 0.07369 -14% TS + ANN
MSE 0.00618 0.00497 -20% TS + ANN
RMSE 0.07859 0.07050 -10% TS + ANN
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Furthermore, the normality tests are re-employed to the residuals of hybrid models

whose results are given in Table 5.7.

Table 5.7: Normality Tests for TS and TS+ANN

LoBs Acc Fir Hea Mtp Lan Mis
TS 0.630* 0.012 0.130* <0.01 0.020 0.370*
TS+ANN 0.084* 0.220* 0.860* 0.410* 0.570* 0.480*
* Normally distributed if P-value>0.05

Upon the application of the hybrid model to each LoB, the normality assumption is

met for all of them. The ultimate model selection process prioritizes the fulfillment

of the normality assumption as the initial criterion, followed by the performance im-

provement. The ultimate models, whether hybrid (TS+ANN) or time series only, are

established and presented in Table 5.8.

Table 5.8: Best Performed Hybrid Models: TS+ANN

LoB TS Model ANN Model
Accident (1,1,1)(0,0,0)[4] NNAR(1,1,2)[4]
Fire (0,0,0)(0,0,0)[4] NNAR(2,1,4)[4]
Health (1,1,0)(0,1,1)[4] -
MTPL (1,0,0)(0,0,0)[4] NNAR(1,1,3)[4]
Land Vehicle (0,1,1)(0,0,0)[4] NNAR(1,3)
Miscellaneous (0,0,0)(0,0,0)[4] NNAR(1,6)

The residuals of the ultimate models, εi,t, are presented in Figure 5.5. The figure

demonstrates a stationary pattern for each LoB, in concurrence with the numerical

test results.
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Figure 5.5: Residuals of the ultimate models

5.4 Copula Modeling

After obtaining the residuals from the final models, the proposed copula modeling

process is followed (Algorithm 3). In line with the process, the correlation structure

on a bi-variate basis and the contours are analyzed and illustrated in Figure 5.6. Con-

tour plots provide insight into the dependency structure of a pair, enabling straightfor-

ward identification of negative or positive dependence, as well as upper tail, lower tail

or symmetric dependencies. In Figure 5.6, some couples demonstrate negative corre-

lations while most of the couples have positive dependence or no association at all.

Certain pairs exhibit negative correlations, whereas the majority of pairs demonstrate

positive dependencies or lack of association. Those with negative dependence are

modeled with an appropriate bivariate copula function rotated by 90 or 270 degrees.
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Figure 5.6: Copula pairs of the residuals of six LoBs

Initial substantial observations reveal that the Health-Miscellaneous pair exhibits lower

tail dependence, whereas the Land Vehicle-Accident pair displays upper tail depen-

dence. Furthermore, the Health-MTPL pair demonstrates negative dependence, whereas

a noticeable positive dependence is observed in the Fire-Miscellaneous.

In accordance with the demand of copula modeling, a transformation is applied to the

residuals. Let εi,t be the residuals from time series models applied to six LoBs where

i = 1, ..., 6 and t = 1, ..., 40. First, the domain of the residuals transferred to [0,1] via

the equation,

Ui,k ∼ F̂n(k) =
1

n

n∑
j=1

1xj≤k, (5.1)

and residuals become uniform marginals (ui,t). These uniform marginals can be de-

scribed as CDFs values of the residuals, Fε(εi,t) = ui,t.

Residuals are modeled using the methodology outlined in Algorithm [11]. This pro-

cess includes identifying the optimal structure and selecting the best-fitting bivariate

copulas. 6-dimensional R-vine structure is given by the tree representations in Figure

5.7:
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Figure 5.7: R-vine fitting for six dimensional structure
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The specifications and the parameters of the bivariate copula models and R-vine trees

are given in Table 5.9.

Table 5.9: R-vine structure: Bivariate distributions of edges

Tree Edge Cond-ed Cond-ing Family Rotation Param df Tau
1 1 5,1 Clayton 180 0.53 1 0.21
1 2 1,4 t 0 0.31, 2.00 2 0.20
1 3 4,3 Joe 90 1.4 1 -0.20
1 4 2,6 TLL 0 [30x30 g] 10 0.13
1 5 3,6 Joe 180 1.5 1 0.20
2 1 5,4 1 Indep 0 0 0
2 2 1,3 4 Indep 0 0 0
2 3 4,6 3 Joe 270 1.29 1 -0.14
2 4 2,3 6 Joe 0 1.22 1 0.11
3 1 5,3 4,1 Indep 0 0 0
3 2 6,1 4,3 Indep 0 0 0
3 3 2,4 3,6 Indep 0 0 0
4 1 1,2 3,4,6 Indep 0 0 0
4 2 5,6 1,3,4 Indep 0 0 0
5 1 2,5 1,3,4,6 Indep 0 0 0

The R-vine contour of the modeled variables is given in Figure (5.8). The contour

plots of the initial five pairs under the first tree, namely Land Vehicle-Accident,

Accident-MTPL, MTPL-Health, Fire-Miscellaneous, and Health-Miscellaneous, ex-

hibit resemblances to the contour plots of the original values as shown in Figure 5.6.

The resemblances between Figure 5.6 and Figure 5.8 are apparent in the contours

of the first tree, indicating a good fit. The remaining contours within the upper-

numbered trees describe the copula attributes of higher level pairings, exemplified by

Fire-Health given Health and MTPL-Miscellaneous given Health.
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Figure 5.8: R-vine Contour

Recognizing that individual branches exhibit extreme tail values, with individual stan-

dard deviations addressing these tail observations, the proposed copula structure of-

fers distinct advantages by collectively representing these extreme values. In our

framework, values exceeding certain thresholds are considered in the calculation of

the solvency capital requirement, a determination driven by the specified upon the

dependence structure delineated by the R-vine. Consequently, the risk of inadequate

diversification is mitigated.

5.5 Application Utilizing the Box-Cox Transformation

The utilization of the Box-Cox transformation to the response variable has the poten-

tial to enhance both its normality and, consequently, improve the accuracy and per-

formance of the linear models [6]. Considering this information, the Box-Cox trans-

formation is implemented on the loss ratios, and a similar methodology is adopted in

the context of time series, artificial neural network and copula modeling.

A comparative analysis between time series and hybrid models has been conducted

and the results are presented in Table 5.10 and Table 5.11, denoting the training and

testing sets, respectively.
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Table 5.10: Comparison of Time Series and Hybrid Models (training set)

LoB Criteria TS TS+ANN Change (%) Final Model

Accident

MAE 0.04324 0.01917 -56% TS+ANN
MAPE 0.08310 0.03724 -55% TS+ANN
MSE 0.00290 0.00054 -81% TS+ANN
RMSE 0.05385 0.02325 -57% TS+ANN

Fire

MAE 0.09978 0.08086 -19% TS+ANN
MAPE 0.12175 0.09609 -21% TS+ANN
MSE 0.01920 0.01380 -28% TS+ANN
RMSE 0.13856 0.11745 -15% TS+ANN

Health

MAE 0.02613 0.02823 8% TS
MAPE 0.02811 0.03036 8% TS
MSE 0.00115 0.00115 0% TS
RMSE 0.03385 0.03387 0% TS

MTPL

MAE 0.11329 0.10414 -8% TS+ANN
MAPE 0.09039 0.08150 -10% TS+ANN
MSE 0.02951 0.02803 -5% TS+ANN
RMSE 0.17178 0.16741 -3% TS+ANN

Land Vehicle

MAE 0.07093 0.04463 -37% TS+ANN
MAPE 0.07682 0.04976 -35% TS+ANN
MSE 0.00965 0.00325 -66% TS+ANN
RMSE 0.09824 0.05704 -42% TS+ANN

Miscellaneous

MAE 0.09994 0.04722 -53% TS+ANN
MAPE 0.12890 0.06118 -53% TS+ANN
MSE 0.01563 0.00378 -76% TS+ANN
RMSE 0.12501 0.06144 -51% TS+ANN
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Table 5.11: Comparison of Time Series and Hybrid Models (testing set)

LoB Criteria TS TS+ANN Change (%) Final Model

Accident

MAE 0.03222 0.02484 -23% TS+ANN
MAPE 0.07730 0.05634 -27% TS+ANN
MSE 0.00137 0.00074 -46% TS+ANN
RMSE 0.03701 0.02728 -26% TS+ANN

Fire

MAE 0.06636 0.04438 -33% TS+ANN
MAPE 0.07933 0.05239 -34% TS+ANN
MSE 0.00640 0.00372 -42% TS+ANN
RMSE 0.07998 0.06099 -24% TS+ANN

Health

MAE 0.01396 0.01720 23% TS
MAPE 0.01483 0.01815 22% TS
MSE 0.00027 0.00038 43% TS
RMSE 0.01636 0.01958 20% TS

MTPL

MAE 0.06002 0.05686 -5% TS+ANN
MAPE 0.05207 0.04884 -6% TS+ANN
MSE 0.00444 0.00404 -9% TS+ANN
RMSE 0.06665 0.06358 -5% TS+ANN

Land Vehicle

MAE 0.15356 0.13394 -13% TS+ANN
MAPE 0.18302 0.15856 -13% TS+ANN
MSE 0.02469 0.02231 -10% TS+ANN
RMSE 0.15712 0.14936 -5% TS+ANN

Miscellaneous

MAE 0.07737 0.06047 -22% TS+ANN
MAPE 0.09483 0.07133 -25% TS+ANN
MSE 0.00729 0.00528 -28% TS+ANN
RMSE 0.08539 0.07268 -15% TS+ANN
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The hybrid models which improve the performance in both training and testing sets

are designated as the final models and listed in Table 5.12.

Table 5.12: Best Performed Hybrid Models for Transformed Data

LoB TS Model ANN Model
Accident (0,1,2)(0,0,0)[4] NNAR(1,1,5)[4]
Fire (0,0,0)(0,0,0)[4] NNAR(1,1,2)[4]
Health (1,1,0)(1,1,0)[4] -
MTPL (1,0,0)(0,0,0)[4] NNAR(1,1,1)[4]
Land Vehicle (0,1,1)(0,0,0)[4] NNAR(1,1,2)[4]
Miscellaneous (0,0,0)(0,0,0)[4] NNAR(1,1,6)[4]

The copula model structure after Box-Cox transformation is given in Table 5.13.

Table 5.13: R-vine structure: Bivariate distributions of edges (data with Box-Cox
transformation)

Tree Edge Cond-ed Cond-ing Family Rotation Param df Tau
1 1 4,1 t 0 0.34, 2.00 2 0.224
1 2 1,6 Gumbel 90 1.4 1 -0.279
1 3 5,3 Indep 0 0 0
1 4 2,6 Indep 0 0 0
1 5 3,6 Clayton 0 0.59 1 0.228
2 1 4,6 1 Indep 0 0 0
2 2 1,2 6 Indep 0 0 0
2 3 5,6 3 Indep 0 0 0
2 4 2,3 6 t 0 0.12, 2.00 2 -0.014
3 1 4,2 6,1 Indep 0 0 0
3 2 3,1 6,2 Indep 0 0 0
3 3 5,2 6,3 Indep 0 0 0
4 1 4,3 6,2,1 Joe 90 1.3 0 -0.140
4 2 5,1 6,3,2 Indep 0 0 0
5 1 4,5 6,3,2,1 Indep 0 0 0

In the next chapter, the outcomes of two distinct analyses will be presented: one

conducted without the Box-Cox transformation, and the other one incorporating the

Box-Cox transformation. Subsequently, a comparative evaluation of these results will

be undertaken.
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5.6 Simulation

Based on the Algorithm 4, both the Inverse Rosenblatt Transform (1952) (Definition

4.2.1) and the recursive formula proposed by Czado (2022), (Equation (4.3)), can be

employed to obtain simulations from the chosen structure.

The decision is made by comparing two methods using the absolute mean of the

difference between the Kendall correlation coefficients matrix of the simulations and

the modeled residuals. Despite the obtained results indicating similarity between the

two methods, the recursive formula exhibited slightly superior performance (0.040 vs

0.042, as percentage of mean absolute deviance). Thus, the simulation of the residuals

is carried out using the recursive formula.

The amounts derived from the standard formula are also provided for the purpose of

comparison. The corresponding standard deviations utilized in the Standard Formula

in Solvency II framework is given in Table 5.14. The rates used in the standard

formula are directly sourced from the regulation [12], whereas the Turkish industry

rates are computed as part of this study.

Table 5.14: Standard Deviations used in the Standard Formula

Standard Formula Turkish Market
Accident 4% 7%
Fire 8% 14%
Health 4% 10%
MTPL 10% 19%
Land Vehicle 8% 12%
Miscellaneous 13% 13%

The calculation of required capital involves two distinct approaches concerning vol-

umes. In the first approach, volumes are derived from the average of the last four

quarters and the weights in the industry are comprehensively represented. Conversely,

the second approach employs equal weighting, with each LoB assigned a fixed value

of 100 units. Having calculated Solvency Capital Requirements via Standard Model,

Hybrid Internal Model and Proposed Model, results are shown in Figure (5.9a-5.9b)
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Table 5.15: Calculations with the estimated volumes for 2021 and equally weighted
volumes (each 100)

Method Vtotal SCR ·NLp Ratio

Weighted

Standard Model 52 BLN 8.7 BLN 17%
Standard Model TR 52 BLN 14.2 BLN 27%

Internal Model (VaR) 52 BLN 9.2 BLN 18%
Internal Model (TVaR) 52 BLN 10 BLN 20%

Equally weighted

Standard Model 600 91.7 15%
Standard Model TR 600 136.5 23%

Internal Model (VaR) 600 65.0 11%
Internal Model (TVaR) 600 71.0 12%

In the estimated volumes case, Table 5.15 illustrates that the standard model sug-

gests an SCR of 17% for the premium risk, whereas the Internal Model proposes a

requirement of 18%. These figures exhibit significant similarity when considering

the portfolio with proportions estimated from the industry data. In the case of equal

weighting, Table 5.15 reveals that the standard model recommends an SCR of 15%,

whereas the internal model suggests 11%. The notable difference can be attributed

to the fact that the internal model possesses greater information regarding extreme

events (tails), leading to more pronounced diversification effects among the LoBs.

Furthermore, it is evident that the calculated amounts based on the Turkish insur-

ance industry rates are substantially higher in both the estimated volumes and equally

weighted volumes. This discrepancy arises due to the standard deviations being com-

puted from time series data, where regular trends and seasonal variations contribute to

elevated standard deviations. The absence of trend and seasonal modeling is expected

to lead to overestimation of the required amounts.

Moreover, subsequent to the implementation of the Box-Cox transformation, the ra-

tios are recalculated, and a comparative analysis of these ratios is presented in Table

5.16. Ratio 1 signifies the computations conducted without employing the Box-Cox

transformation, while Ratio 2 corresponds to the calculations performed with the ap-

plication of Box-Cox transformation.
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Table 5.16: SCR ratios with the estimated volumes for 2021 and equally weighted
volumes

Method Ratio 1 Ratio 2: Box-Cox

Weighted

Standard Model 17% 17%
Standard Model TR 27% 27%

Internal Model (VaR) 18% 25%
Internal Model (TVaR) 20% 29%

Equally weighted

Standard Model 15% 15%
Standard Model TR 23% 23%

Internal Model (VaR) 11% 15%
Internal Model (TVaR) 12% 17%

Making inferences from the data presented in Table 5.16, it becomes evident that

the use of the Box-Cox transformation leads to an increase in the SCR ratios of the

internal models. This fact can be attributed to the enhanced capturing of tail val-

ues facilitated by the Box-Cox transformation. In contrast to the analyses conducted

without the Box-Cox transformation, the analysis incorporating the Box-Cox trans-

formation exhibits a larger difference between VaR and TVaR. This divergence can

be explained by increased ability to generate more extreme tail values.
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(a) The estimated volumes for 2021

(b) Equally weighted volumes

Figure 5.9: Graphical representation of Solvency Capital Requirements
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(a) The estimated volumes for 2021

(b) Equally weighted volumes

Figure 5.10: Graphical representation of Solvency Capital Requirements after the
Box-Cox transformation is applied
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In the context of sensitivity analysis, a 5% shock is imposed on each loss ratio, and the

subsequent changes in the SCR ratios are investigated. In the case of a 5% escalation

in historical loss ratios, the SCR values calculated by the proposed models exhibit

incremental shifts of 2-3%. Conversely, there are no changes in the SCR values for

standard models, as the volatility parameters used in standard models remain constant

for all branches.

Table 5.17: Sensitivity analysis for 5% shock in each loss ratio

Method Original After shock Change

Weighted

Standard Model 17% 17% 0%
Standard Model TR 27% 27% 0%

Internal Model (VaR) 25% 28% 3%
Internal Model (TVaR) 29% 32% 3%

Equally weighted

Standard Model 15% 15% 0%
Standard Model TR 23% 23% 0%

Internal Model (VaR) 15% 17% 2%
Internal Model (TVaR) 17% 20% 3%

5.7 Ruin Probability

The regulatory framework sets the ruin probability at 0.5%. Within the simulation

component of this thesis, a loss environment regarding chosen LoBs and spanning

thousands of years is synthesized. While calculating SCR values under proposed

model, the ruin probability remains fixed at 0.5% in accordance with regulatory

guidelines. Additionally, for the purpose of establishing a comparative benchmark,

we calculate the outcomes of the standard model within the framework of our arti-

ficially constructed losses environment. We determine the probability of exceeding

SCR values, as computed by standard formulas, within the values in the synthesized

data set of loss ratios and contrast this with a predefined fixed ruin probability of

0.5%. The calculated ruin probabilities are given in Table 5.18.
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Table 5.18: Ruin probability comparison

Type Original After shock

Weighted

Standard Model 5.94% 11.90%
Standard Model TR 0.31% 0.62%

Internal Model (VaR) 0.50% 0.50%
Internal Model (TVaR) 0.20% 0.20%

Equally weighted

Standard Model 0.61% 1.30%
Standard Model TR 0.04% 0.06%

Internal Model (VaR) 0.50% 0.50%
Internal Model (TVaR) 0.20% 0.20%

In the context of the weighted volumes case, the ruin probability associated with

the standard model is notably high, primarily because it fails to adequately repre-

sent the volatility specific to the Turkish insurance industry. Conversely, when we

calculate the standard formula using Turkish standard deviations, the resulting ruin

probability is 0.31%, which exceeds the required threshold by approximately 0.2%.

Consequently, this leads to the unnecessary retention of company’s free cash flow.

In the scenario where a 5% shock is applied to all loss ratios, the ruin probability for

the proposed model remains stable at the 0.5% level. However, the ruin probability

for the standard model, when incorporating Turkish industry volatility, escalates to

0.62%. This increase in ruin probability signifies a shortage in the SCR and elevates

the risk of bankruptcy.

Moreover, in the case of equal weighting among branches, the standard formula con-

sidering Turkish industry volatility yields ruin probabilities of 0.04% and 0.06%, cor-

responding to the original dataset and the dataset after applying a 5% shock, respec-

tively. These rates fall significantly below the 0.5% threshold, thereby, this could

result in using an excessive retention of the company’s free cash flow.

When dealing with branches of varying weights, the outcomes may differ. Neverthe-

less, it can be inferred that employing our proposed model will provide users to cal-

culate SCR estimates that align with the 0.5% ruin probability threshold in any case.

This approach ensures that the company avoids both underestimation and overestima-

tion of the SCR, thus accurately addressing its unique premium risk characteristics.
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CHAPTER 6

CONCLUDING COMMENTS

The role of insurance as a pivotal component within the realm of financial services is

of utmost significance. The insurance industry offers insurance coverage through var-

ious branches to diverse entities, including the individuals, real sector, the financial

sector, among others. In this manner, companies can conduct their operations se-

curely, while individuals can safeguard their future and maintain their present stand-

ing through the benefits of insurance coverage. To ensure the continuity of this advan-

tageous environment, the utmost crucial aspect pertains to the insurance companies’

capability to promptly fulfill the compensations arising from the policies they have

issued. The Solvency II regulation serves as a foundation for mitigating potential dis-

ruptions that could emerge from the risks encountered by insurance companies such

as market, life, non-life, health, default and intang risks. The regulation mandates that

insurance companies maintain a solvency capital requirement (SCR) in addition to the

regular reserves, ensuring the capacity to address unforeseen risks associated with the

aforementioned ones. Determining the appropriate capital level is crucial for the fi-

nancial health of the company. Although regulations offer standardized calculations,

companies may utilize internal models, subject to approval by authorities.

In this thesis, an internal model is introduced to address Non-Life Premium risk, in-

tegrating a hybrid Time Series - Artificial Neural Network - Copula approach. In this

methodology, the loss ratios regarding the non-life branches are initially characterized

using suitable time series models. Subsequently, the residuals of these time series

models are further captured using an autoregressive neural network (NNAR) model.

While the linear component is addressed through time series modeling, the non-linear
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aspect is handled using an artificial neural network model. This combined approach

ensures that all residuals of the model conform to a normal distribution, which is a

critical assumption. Additionally, the inclusion of ANN generally leads to improved

performances in the majority of the cases. Finally, the suitable R-vine structure is

devised to effectively accommodate the residuals of the Time Series-ANN model.

After the aforementioned process, a Box-Cox transformation is applied to each Line

of Business (LoB), and the same algorithm is then re-executed with the transformed

variables. The results are preserved for the comparison purposes.

The copula structure is employed for the purpose of simulating residuals correspond-

ing to the selected Line of Businesses (LoB). By aggregating the time series and ANN

components with the residuals, the simulations for the subsequent time intervals are

projected. Through deducting one unit from each projected ratio, the difference be-

tween the projected ratio and the affordable amount covered by regular reserves is

determined, that is the additional amount that needs to be compensated through the

SCR. As an additional necessary procedure, any negative values in the differences

are transformed into zeros. Next, the projected loss ratios are combined with their

corresponding volumes to calculate the total capital requirement with respect to the

chosen LoBs.

After completing the simulation phase, the results for the Solvency Capital Require-

ment (SCR) are obtained using several approaches. These include the SCR calculated

using the standard formula as proposed in the regulation [12], the SCR calculated us-

ing the same formula but with the standard deviations of Turkish data employed in the

study, as well as the Value at Risk (VaR99.5) and Tail Value at Risk (TVaR99.5) of the

simulated projections by employing proposed model. A comparative analysis is then

performed to assess the differences and similarities among these different approaches.

(i) Based on the outcomes derived from the simulations, it can be confidently

stated that the hybrid models employed for the various LoBs have successfully

met all underlying assumptions and establishing the credibility of the models.

Thus, it can be affirmed that the hybrid approach facilitates the fulfillment of

assumptions.

(ii) Next, the utilization of the Box-Cox transformation offers advantages in terms
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of obtaining more precisely fitted hybrid models and enhanced representation

of extreme tail values.

(iii) Moreover, in the scenario of equally weighted volumes, the analysis of SCR

outcomes demonstrates a potential reduction in the SCR amount through the in-

corporation of a temporal component into the model. This arises due to the tem-

poral parameter’s simultaneous impact across all LoBs. This influence could be

duly accounted for when determining regular reserves, rather than affecting the

SCR.

(iv) In addition, the copula structure facilitates a more profound representation of

tail dependence. The utilization of advanced tail dependence methodologies,

such as R-vine, enhances the realism of SCR estimates by effectively address-

ing extreme scenarios.

The methodological framework proposed in this thesis offers a robust alternative strat-

egy for non-life insurance companies seeking to assess premium risk using the inter-

nal model option within the context of Solvency II. This approach can also be used to

test the portfolios of LoBs to decide to invest in which LoBs. Moreover, this model

can function as a tool for appraising portfolios, helping in the optimization of con-

centration across diverse LoBs to mitigate the allocation of high SCR.
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APPENDIX A

TIME SERIES ANALYSES

A.1 Accident

As indicated by the Stationarity Tests presented in Table 5.3, it is evident that the Ac-

cident loss ratios exhibit a consistent trend, thereby requiring the adoption of regular

differencing.

As evident from the analysis of Figure A.1, the analysis of the ACF and PACF plots

for the lagged data indicates the presence of solitary spikes. Consequently, both AR

and MA components can be contemplated within the model, as these spikes may

signify either decaying or spiking patterns. Moreover, it is conceivable to consider

an ARIMA model encompassing both AR and MA components. The potential model

candidates are ARIMA(1,1,0), ARIMA(0,1,1), and ARIMA(1,1,1).

Table A.1: Comparison of Time Series Models: Accident

Fitted Models ADF KPSS OCSB SW BP LB AIC BIC
(1,1,0)(0,0,0)[4] 0.16 0.10 -3.68 0.87 0.91 0.30 -108.2 -105.0
(0,1,1)(0,0,0)[4] 0.37 0.10 -3.80 0.57 0.70 0.39 -108.5 -105.2
(1,1,1)(0,0,0)[4] 0.31 0.10 -4.13 0.63 0.94 0.75 -109.4 -104.4
Criteria <0.05 >0.05 <- 1.89 >0.05 >0.05 >0.05 Smallest Smallest
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(a) Original

(b) Regular Difference

(c) Seasonal Difference

Figure A.1: Accident Insurance loss ratios and its components, 2009-2018

76



Based on the findings presented in Table A.1, the ARIMA(1,1,1) model is selected as

the most suitable fitting model. However, the other models remain viable alternatives,

as indicated by the relatively modest differences in the AIC and BIC scores. Upon

model fitting, an examination of the parameters is conducted, and the results are il-

lustrated in Figure A.2a. In addition, ACF and PACF plots of the model residuals are

given in Figure A.2b.

(a) Coefficient Test

(b) Residuals

Figure A.2: Diagnostic checks of Accident branch

In accordance with the outcomes, all assessed coefficients exhibit statistical signifi-

cance, and the ACF and PACF plots display satisfactory characteristics. As a result,

it can be inferred that the validity of ARIMA(1,1,1) model for the Accident dataset is

affirmed.
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A.2 Fire

As evidenced from the Stationarity Tests outlined in Table 5.3, the ADF test proposes

the need for differencing, whereas the KPSS test assumes the process to be stationary.

As observable through analysis in Figure A.1, the ACF and PACF plots for the lagged

data indicates the presence of single spikes. Similarly in the instance of the Accident

dataset, both AR and MA components can be employed in the model, as these spikes

may indicate either decaying or spiking patterns. In Additionally, it is acceptable to

consider an Random Walk With Drift (RWWD) model which does not include AR

and MA components since the ACF and PACF plots of the original dataset show no

indication of non-stationarity, in contrast to the ADF test. The model candidates to

be considered are ARIMA(1,1,0), ARIMA(0,1,1), and ARIMA(0,0,0) model with a

constant coefficient.

Table A.2: Comparison of Time Series Models: Fire

Fitted Models ADF KPSS OCSB SW BP LB AIC BIC
(1,1,0)(0,0,0)[4] 0.04 0.10 -3.68 0.097 0.56 0.28 -23.9 -18.9
(0,1,1)(0,0,0)[4] 0.18 0.10 -4.01 0.006 0.74 0.51 -35.6 -30.6
(0,0,0)(0,0,0)[4] 0.18 0.10 -4.04 0.013 0.31 0.86 -41.5 -38.1
Criteria <0.05 >0.05 <- 1.89 >0.05 >0.05 >0.05 Smallest Smallest

Based on the findings presented in Table A.2, the ARIMA (1,1,0) model fulfills all

requisite criteria, yet its performance in terms of the AIC and BIC criteria is subop-

timal when compared with the other alternatives. Considering the option to model

the residuals through an ANN framework, the best performing model, ARIMA(0,0,0)

with a constant coefficient (drift), is chosen as the best fitting one. This model is

referred to as RWWD, to put it differently. After model fitting, an evauation of the

parameters is conducted, and the results are given in Figure A.4a. In addition, ACF

and PACF plots of the model residuals are illustrated in Figure A.4b.
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(a) Original

(b) Regular Difference

(c) Seasonal Difference

Figure A.3: Fire Insurance loss ratios and its components, 2009-2018
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(a) Coefficient Test

(b) Residuals

Figure A.4: Diagnostic checks of Fire branch

Consistent with the findings, the intercept is statistically significant and the ACF and

PACF plots show satisfactory characteristics. Consequently, it can be affirmed that

the RWWD model is valid for the Fire dataset.
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A.3 MTPL

Corresponding to the results of the Stationarity Tests outlined in Table 5.3, the ADF

test indicating a unit root, while the KPSS test proposes the process is stationary. In

scenarios characterized by insufficient data size, the emergence of such contradictions

is possible. Therefore, it is recommended to employ alternative models under such

circumstances.

Observable through analysis in Figure A.5, the original dataset indicates one sin-

gle spike on the ACF and PACF plots while having no significant spikes at the data

subjected to regular differencing. In addition, both AR and MA components can be

employed in the model, as these spikes may indicate either decaying or spiking pat-

terns. In Additionally, it is acceptable to consider an integrated ARIMA model since

ADF test results indicate a possible unit root. Finally, the model candidates to be

considered are AR(1), MA(1), ARIMA(1,1,0) and ARIMA (0,1,1).

Table A.3: Comparison of Time Series Models: MTPL

Fitted Models ADF KPSS OCSB SW BP LB AIC BIC
(1,0,0)(0,0,0)[4] 0.11 0.10 -4.28 <0.01 0.15 0.62 -20.4 -15.3
(0,0,1)(0,0,0)[4] 0.12 0.10 -4.36 <0.01 0.24 0.39 -19.6 -14.5
(1,1,0)(0,0,0)[4] 0.05 0.10 -4.21 0.04 0.96 0.68 -8.9 -3.9
(0,1,1)(0,0,0)[4] 0.06 0.10 -4.60 0.01 0.71 0.35 -10.5 -5.5
Criteria <0.05 >0.05 <- 1.89 >0.05 >0.05 >0.05 Smallest Smallest

Following the findings presented in Table A.3, no model fulfills all required crite-

ria. Thus, an ANN model is applied to the residuals of chosen model. However, it

is imperative to select the most appropriate model given these circumstances. The

AR(1) model is identified as the most suitable fitted model based on the comparison

of AIC and BIC. After model fitting, an evaluation of the parameters is conducted,

and the results are given in Figure A.6a. In addition, ACF and PACF plots of the

model residuals are illustrated in Figure A.6b.
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(a) Original

(b) Regular Difference

(c) Seasonal Difference

Figure A.5: MTPL Insurance loss ratios and its components, 2009-2018

82



(a) Coefficient Test

(b) Residuals

Figure A.6: Diagnostic checks of MTPL branch

Adhering to the outcomes, all evaluated coefficients display statistical significance,

and the ACF and PACF plots proves the model has adequate characteristics. As a

result, it can be said that AR(1) model is suitable for the MTPL dataset.
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A.4 Land Vehicle

In accord with the findings of the Stationarity Tests stated in Table 5.3, the ADF test

indicating a unit root, while the KPSS test proposes the process is stationary. In sit-

uations marked by limited data volume, such contradictions may occur as mentioned

in other cases, too. Therefore, it is recommended to apply different models involving

both integrated and non-integrated models.

Aligned with the observations presented in Figure A.7, the original dataset exhibits

a singular spike in the PACF plot, while the ACF plot displays a decaying pattern.

This observation suggests the suitability of an AR(1) model. In the event that the

dataset undergoes regular differencing, the lagged data displays a one spike in the

ACF function alongside a decaying pattern in the PACF, implying the applicabil-

ity of an ARIMA(0,1,1). As alternative approaches, models such as MA(2) and

ARIMA(0,1,2) can also be considered. To conclude, the potential model candidates

for consideration are AR(1), ARIMA(0,1,1), MA(2), and ARIMA(0,1,2).

Table A.4: Comparison of Time Series Models: Land Vehicle

Fitted Models ADF KPSS OCSB SW BP LB AIC BIC
(1,0,0)(0,0,0)[4] 0.01 0.10 -1.79 0.01 0.59 0.01 -47.6 -44.2
(0,1,1)(0,0,0)[4] 0.25 0.08 -2.77 0.02 0.71 0.38 -65.0 -61.2
(0,0,2)(0,0,0)[4] 0.52 0.10 -4.20 0.52 0.74 <0.01 +39.0 +44.1
(0,1,2)(0,0,0)[4] 0.22 0.10 -2.93 0.03 0.55 0.22 -63.3 -58.3
Criteria <0.05 >0.05 <- 1.89 >0.05 >0.05 >0.05 Smallest Smallest

In agreement with the results showed in Table A.4, no model meets all the required

conditions. Hence, an ANN model is employed for the residuals of chosen model.

Nevertheless, it is important to determine the most suited model given these circum-

stances. The ARIMA(0,1,1) model is identified as the best fitted model based on

the comparison of AIC and BIC. After model fitting, a review of the parameters is

carried out, and the outcomes are displayed in Figure A.8a. Additionally, ACF and

PACF plots of the model residuals are given in Figure A.8b.
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(a) Original

(b) Regular Difference

(c) Seasonal Difference

Figure A.7: Land Vehicle Insurance loss ratios and its components, 2009-2018
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(a) Coefficient Test

(b) Residuals

Figure A.8: Diagnostic checks of Land Vehicle branch

According to the results, evaluated coefficient is statistically significant, and the ACF

and PACF plots shows that the model has the required characteristics. As a result, it is

reasonable to assert that ARIMA(0,1,1) model is valid for the Land Vehicle dataset.
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A.5 Miscellaneous

In line with the conclusions drawn from the Stationarity Tests stated in Table 5.3, the

ADF test detects a unit root, while the KPSS test assumes the process is stationary.

Such contradictions may occur as mentioned in other cases. Hence, it is recom-

mended to perform different models such as integrated and non-integrated ones.

making inference from the observations presented in Figure A.9, the original dataset

diplays no spikes in either ACF or PACF plots. Thus, a random walk model can be an

alternative for this LoB. On the contrary, if it is assumed that the process is not sta-

tionary and need differencing, then an ARIMA(0,1,1) model is proposed by investi-

gatiing from the plots of regular differenced data. It has one spike in the ACF function

while a decaying pattern occuring in the PACF. As an alternative, ARIMA(2,1,0) can

be considered. To sum up, the possible models in consideration are ARIMA(0,0,0),

ARIMA(0,1,1), and ARIMA(2,1,0).

Table A.5: Comparison of Time Series Models: Miscellaneous

Fitted Models ADF KPSS OCSB SW BP LB AIC BIC
(0,0,0)(0,0,0)[4] 0.27 0.10 -4.67 0.37 0.07 0.86 -49.6 -46.2
(0,1,1)(0,0,0)[4] 0.23 0.08 -2.72 0.70 0.92 0.72 -43.7 -40.4
(2,1,0)(0,0,0)[4] 0.02 0.10 -5.34 0.47 0.81 0.34 -37.2 -32.2
Criteria <0.05 >0.05 <- 1.89 >0.05 >0.05 >0.05 Smallest Smallest

In alignment with the outcomes exhibited in Table A.5, the ARIMA (2,1,0) model

fulfills all requisite criteria, however, its efficacy with regard to the AIC and BIC

criteria is less than optimal when contrasted with the other alternatives. After deliber-

ating the potential of employing an ANN model to the residuals, the most proficient

model, ARIMA(0,0,0) with a constant coefficient (RWWD), is selected as the most

suitable fitting choice. Subsequent to model fitting, an assessment for the parameters

is conducted, and the outputs are given in Figure A.10a. Moreover, ACF and PACF

plots of the model residuals are displayed in Figure A.10b.

87



(a) Original

(b) Regular Difference

(c) Seasonal Difference

Figure A.9: Miscellaneous Insurance loss ratios and its components, 2009-2018
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(a) Coefficient Test

(b) Residuals

Figure A.10: Diagnostic checks of Miscellaneous branch

In conformity with the results, the intercept is statistically significant and the ACF

and PACF plots indicates that the model has satisfactory characteristics. Accordingly,

it is reasonable to deduce that ARIMA(0,0,0) is a valid model for the Miscellaneous

dataset.
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